Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1337281, 2024.
Article in English | MEDLINE | ID: mdl-38638884

ABSTRACT

Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.

2.
New Phytol ; 242(3): 1218-1237, 2024 May.
Article in English | MEDLINE | ID: mdl-38481030

ABSTRACT

Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Nitrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Biological Transport , Citric Acid/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Physiol ; 191(2): 1305-1323, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36417197

ABSTRACT

Nitrogen is critical for plant growth and development. With the increase of nitrogen fertilizer application, nitrogen use efficiency decreases, resulting in wasted resources. In apple (Malus domestica) rootstocks, the potential molecular mechanism for improving nitrogen uptake efficiency to alleviate low-nitrogen stress remains unclear. We utilized multi-omics approaches to investigate the mechanism of nitrogen uptake in two apple rootstocks with different responses to nitrogen stress, Malus hupehensis and Malus sieversii. Under low-nitrogen stress, Malus sieversii showed higher efficiency in nitrogen uptake. Multi-omics analysis revealed substantial differences in the expression of genes involved in flavonoid and lignin synthesis pathways between the two materials, which were related to the corresponding metabolites. We discovered that basic helix-loop-helix 130 (bHLH130) transcription factor was highly negatively associated with the flavonoid biosynthetic pathway. bHLH130 may directly bind to the chalcone synthase gene (CHS) promoter and inhibit its expression. Overexpressing CHS increased flavonoid accumulation and nitrogen uptake. Inhibiting bHLH130 increased flavonoid biosynthesis while decreasing lignin accumulation, thus improving nitrogen uptake efficiency. These findings revealed the molecular mechanism by which bHLH130 regulates flavonoid and lignin biosyntheses in apple rootstocks under low-nitrogen stress.


Subject(s)
Malus , Malus/metabolism , Nitrogen/metabolism , Lignin/metabolism , Multiomics , Flavonoids/metabolism , Gene Expression Regulation, Plant
4.
J Exp Bot ; 73(18): 6490-6504, 2022 10 18.
Article in English | MEDLINE | ID: mdl-35792505

ABSTRACT

Plants have developed complex mechanisms to adapt to changing nitrate (NO3-) concentrations and can recruit microbes to boost nitrogen absorption. However, little is known about the relationship between functional genes and the rhizosphere microbiome in NO3- uptake of apple rootstocks. Here, we found that variation in Malus domestica NO3- transporter (MdNRT2.4) expression contributes to nitrate uptake divergence between two apple rootstocks. Overexpression of MdNRT2.4 in apple seedlings significantly improved tolerance to low nitrogen via increasing net NO3- influx at the root surface. However, inhibiting the root plasma membrane H+-ATPase activity abolished NO3- uptake and led to NO3- release, suggesting that MdNRT2.4 encodes an H+-coupled nitrate transporter. Surprisingly, the nitrogen concentration of MdNRT2.4-overexpressing apple seedlings in unsterilized nitrogen-poor soil was higher than that in sterilized nitrogen-poor soil. Using 16S ribosomal RNA gene profiling to characterize the rhizosphere microbiota, we found that MdNRT2.4-overexpressing apple seedlings recruited more bacterial taxa with nitrogen metabolic functions, especially Rhizobiaceae. We isolated a bacterial isolate ARR11 from the apple rhizosphere soil and identified it as Rhizobium. Inoculation with ARR11 improved apple seedling growth in nitrogen-poor soils, compared with uninoculated seedlings. Together, our results highlight the interaction of host plant genes with the rhizosphere microbiota for host plant nutrient uptake.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Rhizosphere , Nitrates/metabolism , Nitrate Transporters , Bacteria/genetics , Soil Microbiology , Nitrogen/metabolism , Soil , Seedlings/metabolism , Adenosine Triphosphatases/metabolism , Plant Roots/metabolism
5.
J Appl Microbiol ; 133(2): 720-732, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35462451

ABSTRACT

AIMS: The purpose of this study was to analyse the effects of siderophore-producing bacteria and bacterial siderophore on the iron nutrition of apple rootstocks under iron-deficient conditions. METHODS AND RESULTS: We isolated three Pseudomonas strains, SP1, SP2 and SP3 from the rhizosphere of the Fe-efficient apple rootstocks using the chrome azurol S agar plate assay. We found that all three strains had the ability to secrete indole acetic acid-like compounds and siderophores, especially SP3. When Fe-inefficient rootstocks treated with SP3 were grown in alkaline soil, an increase in the biomass, root development, and Fe concentration was observed in the plants. In addition, SP3 secreted pyoverdine, a siderophore that can chelate Fe3+ to enhance the bioavailability of Fe for plants. We purified the pyoverdine from the SP3 culture supernatant. Hydroponic experiments were conducted with a Fe-deficient solution supplemented with pyoverdine, resulting in a reduction in the chlorosis caused by Fe deficiency and marked improvement in Fe uptake. CONCLUSIONS: Under iron-deficient conditions, Pseudomonas sp. strain SP3 can effectively promote apple rootstock growth and improve plant iron nutrition by secreting siderophores that enhance Fe availability. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that plant growth-promoting rhizobacteria from Fe-efficient plants have the potential to improve iron nutrition in Fe-inefficient plants, and Fe-siderophore chelates can be used as an effective source of iron for apple plants. Based on these findings, it may be possible to develop biological agents such as siderophore-producing bacteria for sustainable agricultural and horticultural production.


Subject(s)
Malus , Siderophores , Bacteria , Iron , Plants , Pseudomonas/genetics , Rhizosphere
6.
mSystems ; 5(6)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33323417

ABSTRACT

Plant roots are usually colonized by various arbuscular mycorrhizal (AM) fungal species, which vary in morphological, physiological, and genetic traits. This colonization constitutes the mycorrhizal nutrient uptake pathway (MP) and supplements the pathway through roots. Simultaneously, the extraradical hyphae of each AM fungus is associated with a community of bacteria. However, whether the community structure and function of the microbiome on the extraradical hyphae differ between AM fungal species remains unknown. In order to understand the community structure and the predicted functions of the microbiome associated with different AM fungal species, a split-root compartmented rhizobox cultivation system, which allowed us to inoculate two AM fungal species separately in two root compartments, was used. We inoculated two separate AM fungal species combinations, (i) Funneliformis mosseae and Gigaspora margarita and (ii) Rhizophagus intraradices and G. margarita, on a single root system of cotton. The hyphal exudate-fed, active microbiome was measured by combining 13C-DNA stable isotope probing with MiSeq sequencing. We found that different AM fungal species, which were simultaneously colonizing a single root system, hosted active microbiomes that were distinct from one another. Moreover, the predicted potential functions of the different microbiomes were distinct. We conclude that the arbuscular mycorrhizal fungal component of the system is responsible for the recruitment of distinct microbiomes in the hyphosphere. The potential significance of the predicted functions of the microbial ecosystem services is discussed.IMPORTANCE Arbuscular mycorrhizal (AM) fungi form tight symbiotic relationships with the majority of terrestrial plants and play critical roles in plant P acquisition, adding a further dimension of complexity. The plant-AM fungus-bacterium system is considered a continuum, with the bacteria colonizing not only the plant roots, but also the associated mycorrhizal hyphal network, known as the hyphosphere microbiome. Plant roots are usually colonized by different AM fungal species which form an independent phosphorus uptake pathway from the root pathway, i.e., the mycorrhizal pathway. The community structure and function of the hyphosphere microbiome of different AM species are completely unknown. In this novel study, we found that arbuscular mycorrhizal fungi cocolonizing on single plant roots recruit their own specific microbiomes, which should be considered in evaluating plant microbiome form and function. Our findings demonstrate the importance of understanding trophic interactions in order to gain insight into the plant-AM fungus-bacterium symbiosis.

7.
FEBS Lett ; 592(20): 3446-3459, 2018 10.
Article in English | MEDLINE | ID: mdl-30238451

ABSTRACT

Understanding the mechanism of iron (Fe)-deficiency responses is crucial for improving plant Fe bioavailability. Here, we found that the Arabidopsis Rho-like GTPase 6 mutant (rop6) is less sensitive to Fe-deficiency responses and has reduced levels of reactive oxygen species (ROS) compared to wild-type (WT), while AtROP6-overexpressing seedlings exhibit more sensitivity to Fe-deficiency responses and has higher levels of ROS compared to WT. Moreover, treatment with H2 O2 improves the sensitivity to Fe-deficiency responses in rop6 mutants. By using the yeast two-hybrid system, we further demonstrate the direct interaction between AtROP6 and Arabidopsis respiratory burst oxidase homolog D (AtRBOHD), which controls the generation of ROS. Overall, we suggest that AtROP6 is involved in AtRBOHD-mediated ROS signaling to modulate Fe-deficiency responses in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Iron/metabolism , Monomeric GTP-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Hydrogen Peroxide/pharmacology , Monomeric GTP-Binding Proteins/genetics , Mutation , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Oxidants/pharmacology , Plants, Genetically Modified , Protein Binding , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...