Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(2): 958-969, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38447074

ABSTRACT

The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.


Subject(s)
Cucumis sativus , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Cucumis sativus/genetics , Cucumis sativus/growth & development , Fruit/genetics , Fruit/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Plant Biotechnol J ; 22(6): 1724-1739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38261466

ABSTRACT

Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)-mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N-acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild-type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.


Subject(s)
Cucumis sativus , Plant Leaves , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/anatomy & histology , Cucumis sativus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Gene Expression Regulation, Plant , Photosynthesis/genetics , Mutation , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...