Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1356488, 2024.
Article in English | MEDLINE | ID: mdl-38476145

ABSTRACT

Background: We investigated the impact of 1) passive heating (PH) induced by single and intermittent/prolonged hot-water immersion (HWI) and 2) the duration of PH, on muscle contractile function under the unfatigued state, and during the development of muscle fatigue. Methods: Twelve young males volunteered for this study consisting of two phases: single phase (SP) followed by intermittent/prolonged phase (IPP), with both phases including two conditions (i.e., four trials in total) performed randomly: control passive sitting (CON) and HWI (44-45°C; water up to the waist level). SP-HWI included one continuous 45-min bath (from 15 to 60 min). IPP-HWI included an initial 45-min bath (from 15 to 60 min) followed by eight additional 15-min baths interspaced with 15-min breaks at room temperature between 75 and 300 min. Intramuscular (Tmu; measured in the vastus lateralis muscle) and rectal (Trec) temperatures were determined. Neuromuscular testing (performed in the knee extensors and flexors) was performed at baseline and 60 min later during SP, and at baseline, 60, 90, 150 and 300 min after baseline during IPP. A fatiguing protocol (100 electrical stimulations of the knee extensors) was performed after the last neuromuscular testing of each trial. Results: HWI increased Tmu and Trec to 38°C-38.5°C (p < 0.05) during both SP and IPP. Under the unfatigued state, HWI did not affect electrically induced torques at 20 Hz (P20) and 100 Hz (P100). However, it induced a shift towards a faster contractile profile during both SP and IPP, as evidenced by a decreased P20/P100 ratio (p < 0.05) and an improved muscle relaxation (i.e., reduced half-relaxation time and increased rate of torque relaxation; p < 0.05). Despite a reduced voluntary activation (i.e., -2.63% ± 4.19% after SP-HWI and -5.73% ± 4.31% after IPP-HWI; condition effect: p < 0.001), HWI did not impair maximal isokinetic and isometric contraction torques. During the fatiguing protocol, fatigue index and the changes in muscle contractile properties were larger after HWI than CON conditions (p < 0.05). Finally, none of these parameters were significantly affected by the heating duration. Conclusion: PH induces changes in muscle contractile function which are not augmented by prolonged exposure when thermal stress is moderate.

2.
Front Aging ; 4: 1171850, 2023.
Article in English | MEDLINE | ID: mdl-37256189

ABSTRACT

Age-related loss of skeletal muscle mass leads to a reduction of strength. It is likely due to an inadequate stimulation of muscle protein synthesis (MPS) in response to anabolic stimuli, such as mechanical load. Ribosome biogenesis is a major determinant of translational capacity and is essential for the control of muscle mass. This mini-review aims to put forth the hypothesis that ribosome biogenesis is impaired by aging in response to mechanical load, which could contribute to the age-related anabolic resistance and progressive muscle atrophy. Recent animal studies indicate that aging impedes muscle hypertrophic response to mechanical overload. This is associated with an impaired transcription of ribosomal DNA (rDNA) by RNA polymerase I (Pol I), a limited increase in total RNA concentration, a blunted activation of AKT/mTOR pathway, and an increased phosphorylation of AMPK. In contrast, an age-mediated impairment of ribosome biogenesis is unlikely in response to electrical stimulations. In human, the hypertrophic response to resistance exercise training is diminished with age. This is accompanied by a deficit in long-term MPS and an absence of increased total RNA concentration. The results addressing the acute response to resistance exercise suggest an impaired Pol I-mediated rDNA transcription and attenuated activation/expression of several upstream regulators of ribosome biogenesis in muscles from aged individuals. Altogether, emerging evidence indicates that impaired ribosome biogenesis could partly explain age-related anabolic resistance to mechanical load, which may ultimately contribute to progressive muscle atrophy. Future research should develop more advanced molecular tools to provide in-depth analysis of muscle ribosome biogenesis.

3.
Front Physiol ; 14: 1172817, 2023.
Article in English | MEDLINE | ID: mdl-37025384

ABSTRACT

Background: We investigated the impact of moderate muscle cooling induced by single and intermittent/prolonged cold-water immersions (CWI) on muscle force and contractility in unfatigued state and during the development of fatigue resulting from electrically induced contractions. Methods: Twelve young males participated in this study consisting of two phases [single phase (SP) followed by intermittent/prolonged phase (IPP)], with both phases including two conditions (i.e., four trials in total) performed randomly: control passive sitting (CON) and cold-water immersions (10°C). SP-CWI included one 45 min-bath (from 15 to 60 min). IPP-CWI included three baths (45 min-bath from 15 to 60 min, and 15 min-baths from 165 to 180 min and from 255 to 270 min), with participants sitting at room temperature the rest of the time until 300 min. Blood pressure and intramuscular (Tmu) temperature were assessed, and neuromuscular testing was performed at baseline and 60 min after baseline during SP, and at baseline, 60, 90, 150 and 300 min after baseline during IPP. A fatiguing protocol (100 electrical stimulations) was performed after the last neuromuscular testing of each trial. Results: In unfatigued state, SP-CWI and IPP-CWI reduced electrically induced torque at 100 Hz (P100) but not at 20 Hz (P20), and increased P20/P100 ratio. The changes from baseline for P100 and P20/P100 ratio were lower in IPP-CWI than SP-CWI. Both cold-water immersion conditions slowed down muscle contraction and relaxation, and reduced maximal isokinetic contraction torque, but the changes from baseline were lower after IPP-CWI than SP-CWI. cold-water immersions did not impair maximal voluntary isometric contraction. During the fatiguing protocol, torque fatigue index and the changes in muscle contractile properties were larger after IPP-CWI than SP-CWI, but were in the same range as after CON conditions. The differences of muscle contractile function between SP-CWI and IPP-CWI were accompanied by a lower reduction of superficial Tmu and a smaller increase in systolic blood pressure after IPP-CWI than SP-CWI. Conclusion: IPP-CWI induces a less pronounced fast-to-slow contractile transition compared to SP-CWI, and this may result from the reduced vasoconstriction response and enhanced blood perfusion of the superficial muscle vessels, which could ultimately limit the reduction of superficial Tmu.

4.
iScience ; 25(12): 105654, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36479146

ABSTRACT

Cells rapidly lose their physiological phenotype upon disruption of their extracellular matrix (ECM)-intracellular cytoskeleton interactions. By comparing adult mouse skeletal muscle fibers, isolated either by mechanical dissection or by collagenase-induced ECM digestion, we investigated acute effects of ECM disruption on cellular and mitochondrial morphology, transcriptomic signatures, and Ca2+ handling. RNA-sequencing showed striking differences in gene expression patterns between the two isolation methods with enzymatically dissociated fibers resembling myopathic phenotypes. Mitochondrial appearance was grossly similar in the two groups, but 3D electron microscopy revealed shorter and less branched mitochondria following enzymatic dissociation. Repeated contractions resulted in a prolonged mitochondrial Ca2+ accumulation in enzymatically dissociated fibers, which was partially prevented by cyclophilin inhibitors. Of importance, muscle fibers of mice with severe mitochondrial myopathy show pathognomonic mitochondrial Ca2+ accumulation during repeated contractions and this accumulation was concealed with enzymatic dissociation, making this an ambiguous method in studies of native intracellular Ca2+ fluxes.

5.
Sports Med Open ; 8(1): 37, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35254558

ABSTRACT

The application of post-exercise cooling (e.g., cold water immersion) and post-exercise heating has become a popular intervention which is assumed to increase functional recovery and may improve chronic training adaptations. However, the effectiveness of such post-exercise temperature manipulations remains uncertain. The aim of this comprehensive review was to analyze the effects of post-exercise cooling and post-exercise heating on neuromuscular function (maximal strength and power), fatigue resistance, exercise performance, and training adaptations. We focused on three exercise types (resistance, endurance and sprint exercises) and included studies investigating (1) the early recovery phase, (2) the late recovery phase, and (3) repeated application of the treatment. We identified that the primary benefit of cooling was in the early recovery phase (< 1 h post-exercise) in improving fatigue resistance in hot ambient conditions following endurance exercise and possibly enhancing the recovery of maximal strength following resistance exercise. The primary negative impact of cooling was with chronic exposure which impaired strength adaptations and decreased fatigue resistance following resistance training intervention (12 weeks and 4-12 weeks, respectively). In the early recovery phase, cooling could also impair sprint performance following sprint exercise and could possibly reduce neuromuscular function immediately after endurance exercise. Generally, no benefits of acute cooling were observed during the 24-72-h recovery period following resistance and endurance exercises, while it could have some benefits on the recovery of neuromuscular function during the 24-48-h recovery period following sprint exercise. Most studies indicated that chronic cooling does not affect endurance training adaptations following 4-6 week training intervention. We identified limited data employing heating as a recovery intervention, but some indications suggest promise in its application to endurance and sprint exercise.

6.
J Cachexia Sarcopenia Muscle ; 13(2): 1151-1163, 2022 04.
Article in English | MEDLINE | ID: mdl-35170227

ABSTRACT

BACKGROUND: Patients with breast cancer exhibit muscle weakness, which is associated with increased mortality risk and reduced quality of life. Muscle weakness is experienced even in the absence of loss of muscle mass in breast cancer patients, indicating intrinsic muscle dysfunction. Physical activity is correlated with reduced cancer mortality and disease recurrence. However, the molecular processes underlying breast cancer-induced muscle weakness and the beneficial effect of exercise are largely unknown. METHODS: Eight-week-old breast cancer (MMTV-PyMT, PyMT) and control (WT) mice had access to active or inactive in-cage voluntary running wheels for 4 weeks. Mice were also subjected to a treadmill test. Muscle force was measured ex vivo. Tumour markers were determined with immunohistochemistry. Mitochondrial biogenesis and function were assessed with transcriptional analyses of PGC-1α, the electron transport chain (ETC) and antioxidants superoxide dismutase (Sod) and catalase (Cat), combined with activity measurements of SOD, citrate synthase (CS) and ß-hydroxyacyl-CoA-dehydrogenase (ßHAD). Serum and intramuscular stress levels were evaluated by enzymatic assays, immunoblotting, and transcriptional analyses of, for example, tumour necrosis factor-α (TNF-α) and p38 mitogen-activated protein kinase (MAPK) signalling. RESULTS: PyMT mice endured shorter time and distance during the treadmill test (~30%, P < 0.05) and ex vivo force measurements revealed ~25% weaker slow-twitch soleus muscle (P < 0.001). This was independent of cancer-induced alteration of muscle size or fibre type. Inflammatory stressors in serum and muscle, including TNF-α and p38 MAPK, were higher in PyMT than in WT mice (P < 0.05). Cancer-induced decreases in ETC (P < 0.05, P < 0.01) and antioxidant gene expression were observed (P < 0.05). The exercise intervention counteracted the cancer-induced muscle weakness and was accompanied by a less aggressive, differentiated tumour phenotype, determined by increased CK8 and reduced CK14 expression (P < 0.05). In PyMT mice, the exercise intervention led to higher CS activity (P = 0.23), enhanced ß-HAD and SOD activities (P < 0.05), and reduced levels of intramuscular stressors together with a normalization of the expression signature of TNFα-targets and ETC genes (P < 0.05, P < 0.01). At the same time, the exercise-induced PGC-1α expression, and CS and ß-HAD activity was blunted in muscle from the PyMT mice as compared with WT mice, indicative that breast cancer interfere with transcriptional programming of mitochondria and that the molecular adaptation to exercise differs between healthy mice and those afflicted by disease. CONCLUSIONS: Four-week voluntary wheel running counteracted muscle weakness in PyMT mice which was accompanied by reduced intrinsic stress and improved mitochondrial and antioxidant profiles and activities that aligned with muscles of healthy mice.


Subject(s)
Breast Neoplasms , Muscle Weakness , Animals , Breast Neoplasms/metabolism , Female , Humans , Mice , Motor Activity , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Quality of Life
7.
Eur J Appl Physiol ; 122(1): 255-266, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34674024

ABSTRACT

PURPOSE: Unaccustomed eccentric contractions generally result in a long-lasting contractile impairment, referred to as prolonged low-frequency force depression (PLFFD), and delayed-onset muscle soreness (DOMS). We here used repeated drop jumps (DJs) as an eccentric contraction model and studied the effects of increasing the time between DJs from 20 s to 5 min. We hypothesized that both PLFFD and DOMS would be less marked at the longer DJ interval due to the longer time to restore structural elements between DJs. METHODS: Young men (n = 12) randomly performed 50 DJs with either 20-s (DJ-20 s) or 5-min (DJ-5 min) rest between DJs. Voluntary, 20 Hz and 100 Hz electrically stimulated isometric knee extension torques and muscle soreness were monitored before and for 7 days after DJs; serum CK activity was measured to assess muscle fibre protein leakage. In additional experiments, changes in mRNA levels were assessed in muscle biopsies collected before and 1 h after exercise. RESULTS: A marked PLFFD was observed with both protocols and the extent of 20 Hz torque depression was smaller immediately and 1 day after DJ-5 min than after DJ-20 s (p < 0.05), whereas the MVC and 100 Hz torques were similarly decreased with the two protocols. Markedly larger differences between the two protocols were observed for the muscle soreness score, which 1-4 days after exercise was about two times larger with DJ-20 s than with DJ-5 min (p < 0.01). CONCLUSIONS: The larger protective effect of the longer DJ interval against DOMS than against PLFFD indicates that their underlying mechanisms involve different structural elements.


Subject(s)
Knee/physiology , Muscle Contraction/physiology , Myalgia/prevention & control , Rest , Adult , Biomarkers/blood , Biopsy, Needle , Creatine Kinase/blood , Electric Stimulation , Humans , Male , Pain Measurement , Time Factors , Torque , Young Adult
8.
Eur J Appl Physiol ; 122(2): 459-474, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34799752

ABSTRACT

PURPOSE: Traditional high-intensity interval exercise (HIIE) highly stimulates the cardiorespiratory system and increases energy expenditure (EE) during exercise. High-intensity resistance exercise (HIRE) has become more popular in recreationally active subjects. The physiological responses to HIRE performed with light or moderate load is currently largely unknown. Here, we examined the effect of the type of interval exercise [HIRE at 40% (HIRE40) and 60% (HIRE60) 1-RM vs. traditional HIIE] on the cardiorespiratory response and EE during and after exercise. METHODS: Fifteen recreationally active adults randomly completed traditional HIIE on an ergocyle, HIRE40 and HIRE60. The sessions consisted of two sets of ten 30-s intervals (power at 100% VO2max during HIIE; maximal number of repetitions for 10 different free-weight exercises during HIRE40 and HIRE60) separated by 30-s active recovery periods. Gas exchange, heart rate (HR) and EE were assessed during and after exercise. RESULTS: VO2mean, VO2peak, HRmean, the time spent above 90% VO2max and HRmax, and aerobic EE were lower in both HIRE sessions compared with HIIE (P < 0.05). Anaerobic glycolytic contribution to total exercise EE was higher in HIRE40 and HIRE60 compared with HIIE (P < 0.001). EE from excess post-exercise oxygen consumption (EPOC) was similar after the three sessions. Overall, similar cardiorespiratory responses and EE were found in HIRE40 and HIRE60. CONCLUSIONS: HIRE is not as effective as HIIE for increasing the cardiorespiratory response and EE during exercise, while EPOC remains similar in HIRE and HIIE. These parameters are not substantially different between HIRE40 and HIRE60.


Subject(s)
Cardiorespiratory Fitness/physiology , Energy Metabolism/physiology , High-Intensity Interval Training/methods , Physical Exertion/physiology , Resistance Training/methods , Cross-Over Studies , Exercise Test , Female , Heart Rate/physiology , Humans , Male , Oxygen Consumption/physiology , Pulmonary Gas Exchange/physiology , Young Adult
9.
FASEB J ; 35(12): e22010, 2021 12.
Article in English | MEDLINE | ID: mdl-34724256

ABSTRACT

The hypoxia-inducible nuclear-encoded mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) has been demonstrated to decrease oxidative phosphorylation and production of reactive oxygen species in neonatal cardiomyocytes, brain tissue and hypoxic domains of cancer cells. Prolonged local hypoxia can negatively affect skeletal muscle size and tissue oxidative capacity. Although skeletal muscle is a mitochondrial rich, oxygen sensitive tissue, the role of NDUFA4L2 in skeletal muscle has not previously been investigated. Here we ectopically expressed NDUFA4L2 in mouse skeletal muscles using adenovirus-mediated expression and in vivo electroporation. Moreover, femoral artery ligation (FAL) was used as a model of peripheral vascular disease to induce hind limb ischemia and muscle damage. Ectopic NDUFA4L2 expression resulted in reduced mitochondrial respiration and reactive oxygen species followed by lowered AMP, ADP, ATP, and NAD+ levels without affecting the overall protein content of the mitochondrial electron transport chain. Furthermore, ectopically expressed NDUFA4L2 caused a ~20% reduction in muscle mass that resulted in weaker muscles. The loss of muscle mass was associated with increased gene expression of atrogenes MurF1 and Mul1, and apoptotic genes caspase 3 and Bax. Finally, we showed that NDUFA4L2 was induced by FAL and that the Ndufa4l2 mRNA expression correlated with the reduced capacity of the muscle to generate force after the ischemic insult. These results show, for the first time, that mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force. Specifically, induced NDUFA4L2 reduces mitochondrial activity leading to lower levels of important intramuscular metabolites, including adenine nucleotides and NAD+ , which are hallmarks of mitochondrial dysfunction and hence shows that dysfunctional mitochondrial activity may drive muscle wasting.


Subject(s)
Electron Transport Complex I/metabolism , Hypoxia/physiopathology , Mitochondria/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Animals , Cell Proliferation , Electron Transport Complex I/genetics , Female , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Reactive Oxygen Species
10.
Eur J Appl Physiol ; 121(4): 1219-1232, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33564963

ABSTRACT

PURPOSE: Carbohydrate (CHO) restriction could be a potent metabolic regulator of endurance exercise-induced muscle adaptations. Here, we determined whether post-exercise CHO restriction following strenuous exercise combining continuous cycling exercise (CCE) and sprint interval exercise could affect the gene expression related to mitochondrial biogenesis and oxidative metabolism in human skeletal muscle. METHODS: In a randomized cross-over design, 8 recreationally active males performed two cycling exercise sessions separated by 4 weeks. Each session consisted of 60-min CCE and six 30-s all-out sprints, which was followed by ingestion of either a CHO or placebo beverage in the post-exercise recovery period. Muscle glycogen concentration and the mRNA levels of several genes related to mitochondrial biogenesis and oxidative metabolism were determined before, immediately after, and at 3 h after exercise. RESULTS: Compared to pre-exercise, strenuous cycling led to a severe muscle glycogen depletion (> 90%) and induced a large increase in PGC1A and PDK4 mRNA levels (~ 20-fold and ~ 10-fold, respectively) during the acute recovery period in both trials. The abundance of the other transcripts was not changed or was only moderately increased during this period. CHO restriction during the 3-h post-exercise period blunted muscle glycogen resynthesis but did not increase the mRNA levels of genes associated with muscle adaptation to endurance exercise, as compared with abundant post-exercise CHO consumption. CONCLUSION: CHO restriction after a glycogen-depleting and metabolically-demanding cycling session is not effective for increasing the acute mRNA levels of genes involved in mitochondrial biogenesis and oxidative metabolism in human skeletal muscle.


Subject(s)
Dietary Carbohydrates/pharmacology , Muscle, Skeletal/metabolism , Organelle Biogenesis , Physical Conditioning, Human/methods , Adult , Diet, Carbohydrate-Restricted/adverse effects , Diet, Carbohydrate-Restricted/methods , Dietary Carbohydrates/administration & dosage , Glycogen/metabolism , Humans , Male , Mitochondria, Muscle/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Human/adverse effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
11.
Scand J Med Sci Sports ; 30(6): 998-1007, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32187403

ABSTRACT

Prolonged low-frequency force depression (PLFFD) induced by fatiguing exercise is characterized by a persistent depression in submaximal contractile force during the recovery period. Muscle glycogen depletion is known to limit physical performance during prolonged low- and moderate-intensity exercise, and accelerating glycogen resynthesis with post-exercise carbohydrate intake can facilitate recovery and improve repeated bout exercise performance. Short-term, high-intensity exercise, however, can cause PLFFD without any marked decrease in glycogen. Here, we studied whether recovery from PLFFD was accelerated by carbohydrate ingestion after 60 minutes of moderate-intensity glycogen-depleting cycling exercise followed by six 30-seconds all-out cycling sprints. We used a randomized crossover study design where nine recreationally active males drank a beverage containing either carbohydrate or placebo after exercise. Blood glucose and muscle glycogen concentrations were determined at baseline, immediately post-exercise, and during the 3-hours recovery period. Transcutaneous electrical stimulation of the quadriceps muscle was performed to determine the extent of PLFFD by eliciting low-frequency (20 Hz) and high-frequency (100 Hz) stimulations. Muscle glycogen was severely depleted after exercise, with a significantly higher rate of muscle glycogen resynthesis during the 3-hours recovery period in the carbohydrate than in the placebo trials (13.7 and 5.4 mmol glucosyl units/kg wet weight/h, respectively). Torque at 20 Hz was significantly more depressed than 100 Hz torque during the recovery period in both conditions, and the extent of PLFFD (20/100 Hz ratio) was not different between the two trials. In conclusion, carbohydrate supplementation enhances glycogen resynthesis after glycogen-depleting exercise but does not improve force recovery when the exercise also involves all-out cycling sprints.


Subject(s)
Blood Glucose/metabolism , Dietary Carbohydrates/administration & dosage , Exercise , Glycogen/metabolism , Muscle Contraction , Muscle, Skeletal/metabolism , Adolescent , Adult , Beverages , Cross-Over Studies , Humans , Male , Quadriceps Muscle , Young Adult
12.
Mech Ageing Dev ; 187: 111228, 2020 04.
Article in English | MEDLINE | ID: mdl-32142719

ABSTRACT

Age-related loss of muscle mass may result from reduced protein synthesis stimulation in response to anabolic stimuli, such as amino acid (AA) supplementation. The exact etiology of anabolic resistance to AA remains unclear. Therefore, the aim of this study was to investigate the anabolic response [cell size, protein synthesis and mechanistic target of rapamycin (mTOR) pathway] to the AA glutamine (a strong anabolic AA highly present in skeletal muscle) in myotubes obtained from 8 young (YW; 21-35 yrs) and 8 older (OW; 65-70 yrs) healthy women. This in vitro model of human primary myogenic cells explores the intrinsic behavior of muscle cells, while excluding potential influences of external factors. We showed that despite lower muscle mass, strength and cardiorespiratory fitness in OW compared to YW, myotube size (myotube diameter and area) and protein synthesis were not altered in OW, and glutamine-induced myotube hypertrophy and protein synthesis were preserved in OW. Apart from a lower glutamine-induced increase in P70S6 kinase phosphorylation in OW, no significant differences in other components of the mTOR pathway were observed between groups. Altogether, our data support the idea that the intrinsic capacity of muscle cells to respond to glutamine stimulation is preserved in healthy older women.


Subject(s)
Glutamine/adverse effects , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/biosynthesis , Signal Transduction/drug effects , Adult , Aged , Cells, Cultured , Female , Glutamine/pharmacology , Humans , Hypertrophy , Muscle Fibers, Skeletal/pathology
14.
Skelet Muscle ; 9(1): 26, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31666122

ABSTRACT

BACKGROUND: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia. METHODS: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1-calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling. RESULTS: Here, we identify LIM and cysteine-rich domains 1 (LMCD1) as a positive regulator of muscle mass, that increases muscle protein synthesis and fiber size. LMCD1 expression in vivo was sufficient to increase specific force with lower requirement for calcium handling and to reduce muscle fatigue. Conversely, silencing LMCD1 expression impairs calcium handling and force, and induces muscle fatigue without overt atrophy. The actions of LMCD1 were dependent on calcineurin, as its inhibition using cyclosporine A reverted the observed hypertrophic phenotype. Finally, we determined that LMCD1 represses the expression of myoregulin, a known negative regulator of muscle performance. Interestingly, we observed that skeletal muscle LMCD1 expression is reduced in patients with skeletal muscle disease. CONCLUSIONS: Our gain- and loss-of-function studies show that LMCD1 controls protein synthesis, muscle fiber size, specific force, Ca2+ handling, and fatigue resistance. This work uncovers a novel role for LMCD1 in the regulation of skeletal muscle mass and function with potential therapeutic implications.


Subject(s)
Co-Repressor Proteins/genetics , Co-Repressor Proteins/physiology , LIM Domain Proteins/genetics , LIM Domain Proteins/physiology , Muscle, Skeletal/physiology , Animals , Calcineurin/physiology , Calcineurin Inhibitors/pharmacology , Calcium/metabolism , Cells, Cultured , Gene Expression Regulation , Humans , Hypertrophy/genetics , Hypertrophy/pathology , Hypertrophy/physiopathology , Mice , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle Strength/genetics , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/physiopathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
15.
J Physiol ; 597(12): 3133-3146, 2019 06.
Article in English | MEDLINE | ID: mdl-31074054

ABSTRACT

KEY POINTS: How defects in muscle contractile function contribute to weakness in amyotrophic lateral sclerosis (ALS) were systematically investigated. Weakness in whole muscles from late stage SOD1G93A mice was explained by muscle atrophy as seen by reduced mass and maximal force. On the other hand, surviving single muscle fibres in late stage SOD1G93A have preserved intracellular Ca2+ handling, normal force-generating capacity and increased fatigue resistance. These intriguing findings provide a substrate for therapeutic interventions to potentiate muscular capacity and delay the progression of the ALS phenotype. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by degeneration and loss of motor neurons, leading to severe muscle weakness and paralysis. The SOD1G93A mouse model of ALS displays motor neuron degeneration and a phenotype consistent with human ALS. The purpose of this study was to determine whether muscle weakness in ALS can be attributed to impaired intrinsic force generation in skeletal muscles. In the current study, motor neuron loss and decreased force were evident in whole flexor digitorum brevis (FDB) muscles of mice in the late stage of disease (125-150 days of age). However, in intact single muscle fibres, specific force, tetanic myoplasmic free [Ca2+ ] ([Ca2+ ]i ), and resting [Ca2+ ]i remained unchanged with disease. Fibre-type distribution was maintained in late-stage SOD1G93A FDB muscles, but remaining muscle fibres displayed greater fatigue resistance compared to control and showed increased expression of myoglobin and mitochondrial respiratory chain proteins that are important determinants of fatigue resistance. Expression of genes central to both mitochondrial biogenesis and muscle atrophy where increased, suggesting that atrophic and compensatory adaptive signalling occurs simultaneously within the muscle tissue. These results support the hypothesis that muscle weakness in SOD1G93A is primarily attributed to neuromuscular degeneration and not intrinsic muscle fibre defects. In fact, surviving muscle fibres displayed maintained adaptive capacity with an exercise training-like phenotype, which suggests that compensatory mechanisms are activated that can function to delay disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Muscle Fibers, Skeletal/physiology , Adaptation, Physiological , Amyotrophic Lateral Sclerosis/pathology , Animals , Calcium/physiology , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Motor Neurons/pathology , Motor Neurons/physiology , Muscle Weakness , Nerve Degeneration
16.
Sci Rep ; 9(1): 5483, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940834

ABSTRACT

We generated an inducible, skeletal muscle-specific Dicer knockout mouse to deplete microRNAs in adult skeletal muscle. Following tamoxifen treatment, Dicer mRNA expression was significantly decreased by 87%. Wild-type (WT) and Dicer knockout (KO) mice were subjected to either synergist ablation or hind limb suspension for two weeks. There was no difference in muscle weight with hypertrophy or atrophy between WT and KO groups; however, even with the significant loss of Dicer expression, myomiR (miR-1, -133a and -206) expression was only reduced by 38% on average. We next aged WT and KO mice for ~22 months following Dicer inactivation to determine if myomiR expression would be further reduced over a prolonged timeframe and assess the effects of myomiR depletion on skeletal muscle phenotype. Skeletal muscle Dicer mRNA expression remained significantly decreased by 80% in old KO mice and sequencing of cloned Dicer mRNA revealed the complete absence of the floxed exons in KO skeletal muscle. Despite a further reduction of myomiR expression to ~50% of WT, no change was observed in muscle morphology between WT and KO groups. These results indicate the life-long reduction in myomiR levels did not adversely affect skeletal muscle phenotype and suggest the possibility that microRNA expression is uniquely regulated in skeletal muscle.


Subject(s)
DEAD-box RNA Helicases/genetics , Down-Regulation , Gene Expression Profiling/methods , Muscle, Skeletal/anatomy & histology , Ribonuclease III/genetics , Animals , Hindlimb Suspension , Mice , Mice, Knockout , MicroRNAs/genetics , Muscle, Skeletal/chemistry , Tamoxifen/adverse effects
17.
Am J Physiol Cell Physiol ; 317(1): C101-C110, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30917033

ABSTRACT

The specific impact of reduced temperature on skeletal muscle adaptation has been poorly investigated. Cold water immersion, one situation leading to decreased skeletal muscle temperature, is commonly proposed to reduce the perception of fatigue and muscle soreness after strenuous exercise. In contrast, it may impair long-term benefits of resistance exercise training on muscle strength and hypertrophy. To date, the physiological factors responsible for this blunted muscle adaptation remain unclear. Here, we used a cell culture model of human primary myotubes to specifically investigate the intrinsic behavior of muscle cells during mild hypothermia (MH). Newly formed myotubes were exposed to either 37°C or 32°C to evaluate the effect of MH on myotube size and morphology, protein synthesis, and anabolic signaling. We also compared the glutamine (GLUT)-induced hypertrophic response between myotubes incubated at 32°C or 37°C. We showed that 48 h exposure to MH altered the cellular morphology (greater myotube area, shorter myosegments, myotubes with irregular shape) and impaired GLUT-induced myotube hypertrophy. Moreover, MH specifically reduced protein synthesis at 8 h. This result may be explained by an altered regulation of ribosome biogenesis, as evidenced by a lower expression of 45S pre-ribosomal RNA and MYC protein, and a lower total RNA concentration. Furthermore, MH blunted GLUT-induced increase in protein synthesis at 8 h, a finding consistent with an impaired activation of the mechanistic target of rapamycin pathway. In conclusion, this study demonstrates that MH impairs the morphology of human myotubes and alters the hypertrophic response to GLUT.


Subject(s)
Cell Shape/drug effects , Cold Temperature/adverse effects , Glutamine/pharmacology , Muscle Fibers, Skeletal/drug effects , Adult , Cell Size , Cells, Cultured , Female , Humans , Hypertrophy , Male , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Primary Cell Culture , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Time Factors
19.
J Appl Physiol (1985) ; 127(2): 599-607, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30605395

ABSTRACT

The ribosome is typically viewed as a supramolecular complex with constitutive and invariant capacity in mediating translation of mRNA into protein. This view has been challenged by recent research revealing that ribosome composition could be heterogeneous, and this heterogeneity leads to functional ribosome specialization. This review presents the idea that ribosome heterogeneity results from changes in its various components, including variations in ribosomal protein (RP) composition, posttranslational modifications of RPs, changes in ribosomal-associated proteins, alternative forms of rRNA, and posttranscriptional modifications of rRNAs. Ribosome heterogeneity could be orchestrated at several levels and may depend on numerous factors, such as the subcellular location, cell type, tissue specificity, the development state, cell state, ribosome biogenesis, RP turnover, physiological stimuli, and circadian rhythm. Ribosome specialization represents a completely new concept for the regulation of gene expression. Specialized ribosomes could modulate several aspects of translational control, such as mRNA translation selectivity, translation initiation, translational fidelity, and translation elongation. Recent research indicates that the expression of Rpl3 is markedly increased, while that of Rpl3l is highly reduced during mouse skeletal muscle hypertrophy. Moreover, Rpl3l overexpression impairs the growth and myogenic fusion of myotubes. Although the function of Rpl3 and Rpl3l in the ribosome remains to be clarified, these findings suggest that ribosome specialization may be potentially involved in the control of protein translation and skeletal muscle size. Limited data concerning ribosome specialization are currently available in skeletal muscle. Future investigations have the potential to delineate the function of specialized ribosomes in skeletal muscle.


Subject(s)
Muscle, Skeletal/physiology , Protein Biosynthesis/genetics , Ribosomal Proteins/genetics , Ribosomes/physiology , Animals , Humans , Hypertrophy/genetics , Hypertrophy/physiopathology , Muscle Development/genetics , Muscle Development/physiology , Muscle Fibers, Skeletal/physiology , Protein Biosynthesis/physiology , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , RNA, Messenger/genetics , RNA, Ribosomal/genetics , Ribosomal Protein L3 , Ribosomes/genetics
20.
Front Physiol ; 9: 1450, 2018.
Article in English | MEDLINE | ID: mdl-30369887

ABSTRACT

Skeletal muscle is able to modify its size, and its metabolic/contractile properties in response to a variety of stimuli, such as mechanical stress, neuronal activity, metabolic and hormonal influences, and environmental factors. A reduced oxygen availability, called hypoxia, has been proposed to induce metabolic adaptations and loss of mass in skeletal muscle. In addition, several evidences indicate that muscle fiber-type composition could be affected by hypoxia. The main purpose of this review is to explore the adaptation of skeletal muscle fiber-type composition to exposure to high altitude (ambient hypoxia) and under conditions of pathological hypoxia, including chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF) and obstructive sleep apnea syndrome (OSAS). The muscle fiber-type composition of both adult animals and humans is not markedly altered during chronic exposure to high altitude. However, the fast-to-slow fiber-type transition observed in hind limb muscles during post-natal development is impaired in growing rats exposed to severe altitude. A slow-to-fast transition in fiber type is commonly found in lower limb muscles from patients with COPD and CHF, whereas a transition toward a slower fiber-type profile is often found in the diaphragm muscle in these two pathologies. A slow-to-fast transformation in fiber type is generally observed in the upper airway muscles in rodent models of OSAS. The factors potentially responsible for the adaptation of fiber type under these hypoxic conditions are also discussed in this review. The impaired locomotor activity most likely explains the changes in fiber type composition in growing rats exposed to severe altitude. Furthermore, chronic inactivity and muscle deconditioning could result in the slow-to-fast fiber-type conversion in lower limb muscles during COPD and CHF, while the factors responsible for the adaptation of muscle fiber type during OSAS remain hypothetical. Finally, the role played by cellular hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α), and other molecular regulators in the adaptation of muscle fiber-type composition is described in response to high altitude exposure and conditions of pathological hypoxia.

SELECTION OF CITATIONS
SEARCH DETAIL
...