Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 173: 116393, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461684

ABSTRACT

Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.


Subject(s)
Calcium Oxalate , Kidney Calculi , Pyrenes , Humans , Calcium Oxalate/metabolism , Crystallization , Kidney Calculi/metabolism , Proteins , Extracellular Matrix/metabolism
2.
Curr Res Food Sci ; 8: 100650, 2024.
Article in English | MEDLINE | ID: mdl-38145155

ABSTRACT

Recent evidence has shown an association between kidney stone pathogenesis and oxidative stress. Many anti-oxidants have been studied with an aim for stone prevention. Quercetin, a natural flavonol, is one among those eminent anti-oxidants with satisfactory anti-inflammatory property to cope with renal tissue injury in kidney stone disease. Nevertheless, its direct effect (if any) on calcium oxalate (CaOx) crystals and the stone formation mechanism had not been previously explored. This study has addressed the ability of quercetin at various concentrations (2.5, 5, 10, 20, 40, 80 and 160 µM) to directly modulate CaOx crystallization, growth, aggregation, adhesion on kidney cells, and invasion through the matrix. The data have shown that quercetin significantly inhibits CaOx crystallization and crystal growth but promotes crystal aggregation in concentration-dependent manner. However, quercetin at all these concentrations do not affect CaOx adhesion on kidney cells. For the invasion, quercetin at all concentrations constantly promotes CaOx invasion through the matrix without concentration-dependent pattern. These discoveries have demonstrated for the first time that quercetin has direct but dual modulatory effects on CaOx crystals. While quercetin inhibits CaOx crystallization and growth, on the other hand, it promotes CaOx crystal aggregation and invasion through the matrix. These data highlight the role for quercetin in direct modulation of the CaOx crystals that may intervene the stone pathogenesis.

3.
Comput Struct Biotechnol J ; 21: 3854-3864, 2023.
Article in English | MEDLINE | ID: mdl-37593722

ABSTRACT

Calcineurin inhibitors (CNIs) are widely used in organ transplantation to suppress immunity and prevent allograft rejection. However, some transplant patients receiving CNIs have hypocitraturia, hyperoxaluria and kidney stone with unclear mechanism. We hypothesized that CNIs suppress activities of urinary calcineurin, which may serve as the stone inhibitor. This study aimed to investigate effects of calcineurin B (CNB) on calcium oxalate monohydrate (COM) stone formation. Sequence and structural analyses revealed that CNB contained four EF-hand (Ca2+-binding) domains, which are known to regulate Ca2+ homeostasis and likely to affect COM crystals. Various crystal assays revealed that CNB dramatically inhibited COM crystallization, crystal growth and crystal aggregation. At an equal amount, degrees of its inhibition against crystallization and crystal growth were slightly inferior to total urinary proteins (TUPs) from healthy subjects that are known to strongly inhibit COM stone formation. Surprisingly, its inhibitory effect against crystal aggregation was slightly superior to TUPs. While TUPs dramatically inhibited crystal-cell adhesion, CNB had no effect on this process. Ca2+-affinity assay revealed that CNB strongly bound Ca2+ at a comparable degree as of TUPs. These findings indicate that CNB serves as a novel inhibitor of COM crystallization, growth and aggregation via its high Ca2+-affinity property.

5.
J Transl Med ; 21(1): 294, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37131163

ABSTRACT

Recent evidence has shown significant roles of mitochondria-derived vesicles (MDVs) in mitochondrial quality control (MQC) system. Under mild stress condition, MDVs are formed to carry the malfunctioned mitochondrial components, such as mitochondrial DNA (mtDNA), peptides, proteins and lipids, to be eliminated to restore normal mitochondrial structure and functions. Under severe oxidative stress condition, mitochondrial dynamics (fission/fusion) and mitophagy are predominantly activated to rescue mitochondrial structure and functions. Additionally, MDVs generation can be also triggered as the major MQC machinery to cope with unhealthy mitochondria when mitophagy is unsuccessful for eliminating the damaged mitochondria or mitochondrial fission/fusion fail to recover the mitochondrial structure and functions. This review summarizes the current knowledge on MDVs and discuss their roles in physiologic and pathophysiologic conditions. In addition, the potential clinical relevance of MDVs in therapeutics and diagnostics of kidney stone disease (KSD) are emphasized.


Subject(s)
Kidney Calculi , Mitochondria , Humans , Mitochondria/metabolism , Oxidative Stress , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitophagy , Kidney Calculi/therapy
6.
Asian Pac J Cancer Prev ; 23(6): 2017-2025, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35763644

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) represents a global health concern, particularly in Southeast Asia where hepatitis B virus (HBV) infection is common. In this study, we applied tissue-based proteomics to identify novel serological proteins for HCC and validated their performance in serum specimens. METHODS: In a discovery set, liver tissue specimens of HBV-related HCC, intrahepatic cholangiocarcinoma (iCCA) and colorectal cancer with liver metastasis (CRLM) were analyzed using mass spectrometry (LTQ-Orbitrap-XL). A subset of proteins that showed highly expressed in HCC were then confirmed by Western blotting. Additionally, clinical significance of selected candidate proteins was tested in serum samples of 80 patients with HBV-related HCC, 50 patients with HBV-related liver cirrhosis and 30 healthy controls. RESULTS: Based on LTQ-Orbitrap-XL mass spectrometer, various differentially expressed proteins (DEPs) between tumor and adjacent non-tumor tissues were identified. These included 77 DEPs for HCC, 77 DEPs for iCCA and 55 DEPs for CRLM. Among selected candidate proteins, annexin A2 and cathepsin D were confirmed to be overexpressed in HCC tissue by Western blot analysis. In a validate cohort, serum cathepsin D level, but not annexin A2, was significantly higher in HCC compared with the non-HCC groups. Serum cathepsin D level was also positively correlated with tumor size and tumor stage. Additionally, the combined assay of serum cathepsin D and alpha-fetoprotein had a high sensitivity in detecting early HCC (83%) and intermediate/advanced HCC (96%). Moreover, patients with low serum cathepsin D (<305 ng/mL) displayed significantly better overall survival than those whose serum levels were high (≥305 ng/mL). CONCLUSIONS: Proteomics and subsequent validation revealed cathepsin D as a novel biomarker for HCC. Apart from its diagnostic role, serum cathepsin D might also serve as a prognostic biomarker of HCC. Additional large-scale studies are needed to verify our findings.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cathepsin D/blood , Cholangiocarcinoma , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Neuroblastoma , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Biomarkers , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/pathology , Hepatitis B/complications , Hepatitis B/pathology , Hepatitis B virus , Humans , Liver Cirrhosis , Liver Neoplasms/pathology
7.
Int J Biol Macromol ; 214: 542-553, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35752338

ABSTRACT

Roles of an abundant human urinary protein, uromodulin (UMOD), in kidney stone disease were previously controversial. Recently, we have demonstrated that oxidative modification reverses overall modulatory activity of whole urinary proteins, from inhibition to promotion of calcium oxalate (CaOx) stone-forming processes. We thus hypothesized that oxidation is one of the factors causing those previously controversial UMOD data on stone modulation. Herein, we addressed effects of performic-induced oxidation on CaOx crystal modulatory activity of UMOD. Sequence analyses revealed two EGF-like calcium-binding domains (65th-107th and 108th-149th), two other calcium-binding motifs (65th-92nd and 108th-135th), and three oxalate-binding motifs (199th-207th, 361st-368th and 601st-609th) in UMOD molecule. Analysis of tandem mass spectrometric dataset of whole urinary proteins confirmed marked increases in oxidation, dioxidation and trioxidation of UMOD in the performic-modified urine samples. UMOD was then purified from the normal urine and underwent performic-induced oxidative modification, which was confirmed by Oxyblotting. The oxidized UMOD significantly promoted CaOx crystallization and crystal growth, whereas the unmodified native UMOD inhibited CaOx crystal growth. However, the oxidized UMOD did not affect CaOx crystal aggregation. Therefore, our data indicate that oxidized forms of UMOD promote CaOx crystallization and crystal growth, which are the important processes for CaOx kidney stone formation.


Subject(s)
Calcium Oxalate , Kidney Calculi , Uromodulin , Calcium , Calcium Oxalate/chemistry , Crystallization , Humans , Kidney Calculi/chemistry , Proteins , Uromodulin/chemistry
8.
Curr Protoc ; 2(3): e390, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35275445

ABSTRACT

The mitochondrion is a key intracellular organelle regulating metabolic processes, oxidative stress, energy production, calcium homeostasis, and cell survival. Protein phosphorylation plays an important role in regulating mitochondrial functions and cellular signaling pathways. Dysregulation of protein phosphorylation status can cause protein malfunction and abnormal signal transduction, leading to organ dysfunction and disease. Investigating the mitochondrial phosphoproteins is therefore crucial to better understand the molecular and pathogenic mechanisms of many metabolic disorders. Conventional analyses of phosphoproteins, for instance, via western blotting, can be done only for proteins for which specific antibodies to their phosphorylated forms are available. Moreover, such an approach is not suitable for large-scale study of phosphoproteins. Currently, proteomics represents an important tool for large-scale analysis of proteins and their post-translational modifications, including phosphorylation. Here, we provide step-by-step protocols for the proteomics analysis of mitochondrial phosphoproteins (the phosphoproteome), using renal tubular cells as an example. These protocols include methods to effectively isolate mitochondria and to validate the efficacy of mitochondrial enrichment as well as its purity. We also provide detailed protocols for performing both gel-based and gel-free phosphoproteome analyses. The gel-based analysis involves two-dimensional gel electrophoresis and phosphoprotein-specific staining, followed by protein identification via mass spectrometry, whereas the gel-free approach is based on in-solution mass spectrometric identification of specific phosphorylation sites and residues. In all, these approaches allow large-scale analyses of mitochondrial phosphoproteins that can be applied to other cells and tissues of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Mitochondrial isolation/purification from renal tubular cells Support Protocol: Validation of enrichment efficacy and purity of mitochondrial isolation Basic Protocol 2: Gel-based phosphoproteome analysis Basic Protocol 3: Gel-free phosphoproteome analysis.


Subject(s)
Mitochondria , Mitochondrial Proteins , Phosphoproteins , Proteomics , Electrophoresis, Gel, Two-Dimensional , Mitochondria/chemistry , Mitochondrial Proteins/analysis , Phosphoproteins/analysis , Proteome/analysis , Proteomics/methods
9.
Mol Cell Proteomics ; 20: 100151, 2021.
Article in English | MEDLINE | ID: mdl-34562649

ABSTRACT

The incidence/prevalence of kidney stone disease has been increasing around the globe, but its pathogenic mechanisms remained unclear. We evaluated effects of oxidative modifications of urinary proteins on calcium oxalate (CaOx) stone formation processes. Urinary proteins derived from 20 healthy individuals were modified by performic oxidation, and the presence of oxidatively modified urinary proteins was verified, quantified, and characterized by Oxyblot assay and tandem MS (nanoLC-electrospray ionization-linear trap quadrupole-Orbitrap-MS/MS). Subsequently, activities of oxidatively modified urinary proteins on CaOx stone formation processes were examined. Oxyblot assay confirmed the marked increase in protein oxidation level in the modified urine. NanoLC-electrospray ionization-linear trap quadrupole-Orbitrap-MS/MS identified a total of 193 and 220 urinary proteins in nonmodified and modified urine samples, respectively. Among these, there were 1121 and 5297 unambiguous oxidatively modified peptides representing 42 and 136 oxidatively modified proteins in the nonmodified and modified urine samples, respectively. Crystal assays revealed that oxidatively modified urinary proteins significantly promoted CaOx crystallization, crystal growth, and aggregation. By contrast, the nonmodified urinary proteins had inhibitory activities. This is the first direct evidence demonstrating that oxidative modifications of urinary proteins increase the risk of kidney stone disease by switching their modulatory activities from inhibiting to promoting CaOx crystallization, crystal growth, and aggregation.


Subject(s)
Calcium Oxalate/chemistry , Kidney Calculi/chemistry , Peptides/urine , Proteins/chemistry , Urine/chemistry , Adult , Crystallization , Humans , Oxidation-Reduction , Young Adult
10.
Commun Biol ; 4(1): 959, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381146

ABSTRACT

The association between kidney stone disease and renal fibrosis has been widely explored in recent years but its underlying mechanisms remain far from complete understanding. Using label-free quantitative proteomics (nanoLC-ESI-LTQ-Orbitrap MS/MS), this study identified 23 significantly altered secreted proteins from calcium oxalate monohydrate (COM)-exposed macrophages (COM-MP) compared with control macrophages (Ctrl-MP) secretome. Functional annotation and protein-protein interactions network analysis revealed that these altered secreted proteins were involved mainly in inflammatory response and fibroblast activation. BHK-21 renal fibroblasts treated with COM-MP secretome had more spindle-shaped morphology with greater spindle index. Immunofluorescence study and gelatin zymography revealed increased levels of fibroblast activation markers (α-smooth muscle actin and F-actin) and fibrotic factors (fibronectin and matrix metalloproteinase-9 and -2) in the COM-MP secretome-treated fibroblasts. Our findings indicate that proteins secreted from macrophages exposed to COM crystals induce renal fibroblast activation and may play important roles in renal fibrogenesis in kidney stone disease.


Subject(s)
Calcium Oxalate/metabolism , Fibroblasts/metabolism , Kidney/metabolism , Macrophages/metabolism , Animals , Calcium Oxalate/chemistry , Cricetinae , Humans , Protein Interaction Maps , U937 Cells
11.
Front Physiol ; 11: 566506, 2020.
Article in English | MEDLINE | ID: mdl-33192563

ABSTRACT

Mitochondrion is a pivotal intracellular organelle that plays crucial roles in regulation of energy production, oxidative stress, calcium homeostasis, and apoptosis. Kidney stone disease (nephrolithiasis/urolithiasis), particularly calcium oxalate (CaOx; the most common type), has been shown to be associated with oxidative stress and tissue inflammation/injury. Recent evidence has demonstrated the involvement of mitochondrial dysfunction in CaOx crystal retention and aggregation as well as Randall's plaque formation, all of which are the essential mechanisms for kidney stone formation. This review highlights the important roles of mitochondria in renal cell functions and provides the data obtained from previous investigations of mitochondria related to kidney stone disease. In addition, mechanisms for the involvement of mitochondrial dysfunction in the pathophysiology of kidney stone disease are summarized. Finally, future perspectives on the novel approach to prevent kidney stone formation by mitochondrial preservation are discussed.

12.
Sci Rep ; 10(1): 5843, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246012

ABSTRACT

Mitochondrial dysfunction has been thought to play roles in the pathogenesis of diabetic nephropathy (DN). However, precise mechanisms underlying mitochondrial dysfunction in DN remained unclear. Herein, mitochondria were isolated from renal tubular cells after exposure to normal glucose (5.5 mM glucose), high glucose (25 mM glucose), or osmotic control (5.5 mM glucose + 19.5 mM mannitol) for 96 h. Comparative proteomic analysis revealed six differentially expressed proteins among groups that were subsequently identified by tandem mass spectrometry (nanoLC-ESI-ETD MS/MS) and confirmed by Western blotting. Several various types of post-translational modifications (PTMs) were identified in all of these identified proteins. Interestingly, phosphorylation and oxidation were most abundant in mitochondrial proteins whose levels were exclusively increased in high glucose condition. The high glucose-induced increases in phosphorylation and oxidation of mitochondrial proteins were successfully confirmed by various assays including MS/MS analyses. Moreover, high glucose also increased levels of phosphorylated ezrin, intracellular ATP and ROS, all of which could be abolished by a p38 MAPK inhibitor (SB239063), implicating a role of p38 MAPK-mediated phosphorylation in high glucose-induced mitochondrial dysfunction. These data indicate that phosphorylation and oxidation of mitochondrial proteins are, at least in part, involved in mitochondrial dysfunction in renal tubular cells during DN.


Subject(s)
Glucose/pharmacology , Kidney Tubules/drug effects , Mitochondrial Proteins/drug effects , Animals , Blotting, Western , Dogs , Kidney Tubules/metabolism , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/metabolism , Mass Spectrometry , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidation-Reduction/drug effects , Phosphoproteins/metabolism , Phosphorylation/drug effects , Proteomics/methods
13.
J Biol Inorg Chem ; 24(2): 235-246, 2019 03.
Article in English | MEDLINE | ID: mdl-30701361

ABSTRACT

Fibronectin, an extracellular matrix (ECM) protein, has been thought to be involved in pathogenic mechanisms of kidney stone disease, especially calcium oxalate (CaOx) type. Nevertheless, its precise roles in modulation of CaOx crystal remained unclear. We thus performed a systematic evaluation of effects of fibronectin on CaOx monohydrate (COM) crystal (the major causative chemical crystal in kidney stone formation) in various stages of kidney stone pathogenesis, including crystallization, crystal growth, aggregation, adhesion onto renal tubular cells, and invasion through ECM in renal interstitium. The data showed that fibronectin significantly decreased crystallization, growth and adhesive capability of COM crystals in a dose-dependent manner. In contrast, COM crystal aggregation and invasion through ECM migration chamber were significantly enhanced by fibronectin in a dose-dependent fashion. Sequence analysis revealed three calcium-binding and six oxalate-binding domains in fibronectin. Immunofluorescence study confirmed binding of fibronectin to COM crystals. Additionally, calcium- and oxalate-affinity assays confirmed depletion of both calcium and oxalate ions after incubation with fibronectin. Moreover, calcium-saturated and oxalate-saturated forms of fibronectin markedly reduced the modulatory activities of fibronectin on COM crystallization, crystal growth, aggregation, and adhesion onto the cells. These data strongly indicate the dual functions of fibronectin, which serves as an inhibitor for COM crystallization, crystal growth and adhesion onto renal tubular cells, but on the other hand, acts as a promoter for COM crystal aggregation and invasion through ECM. Finally, its COM crystal modulatory activities are most likely mediated through binding with calcium and oxalate ions on the crystals and in their environment.


Subject(s)
Calcium Oxalate/chemistry , Extracellular Matrix/chemistry , Fibronectins/chemistry , Kidney Tubules/chemistry , Animals , Cell Adhesion , Crystallization , Dogs , Humans , Kidney Tubules/cytology , Madin Darby Canine Kidney Cells
14.
Proteomics ; 18(8): e1800008, 2018 04.
Article in English | MEDLINE | ID: mdl-29464862

ABSTRACT

Our previous expression study has reported a set of proteins with altered levels in renal tubular cells after exposure to calcium oxalate monohydrate (COM) crystals, which are the main composition of kidney stones. However, their functional significance remained largely unknown. In this study, protein network analysis revealed that the significantly altered proteins induced by COM crystals were involved mainly in three main functional networks, including i) cell proliferation and wound healing; ii) oxidative stress and mitochondrial function; and iii) cellular junction complex and integrity. Cell proliferation and wound healing assays showed that the COM-treated cells had defective proliferation and tissue healing capability, respectively. Oxyblot analysis demonstrated accumulation of the oxidized proteins, whereas intracellular ATP level was significantly increased in the COM-treated cells. Additionally, level of zonula occludens-1 (ZO-1), a tight junction protein, was significantly decreased, consistent with the significant declines in transepithelial resistance (TER) and level of RhoA signaling molecule in the COM-treated cells. These findings indicate significant perturbations in mitochondrial and oxidative stress axis that cause defective cell proliferation, tissue healing capability, junctional protein complex, and cellular integrity of renal tubular epithelial cells exposed to COM crystals that may play important roles in kidney stone pathogenesis.


Subject(s)
Calcium Oxalate/metabolism , Epithelial Cells/cytology , Kidney Tubules/cytology , Protein Interaction Maps , Adenosine Triphosphate/metabolism , Animals , Cell Proliferation , Cell Survival , Crystallization , Dogs , Epithelial Cells/metabolism , Kidney Tubules/metabolism , Madin Darby Canine Kidney Cells , Oxidative Stress , Zonula Occludens-1 Protein/metabolism , rhoA GTP-Binding Protein/metabolism
15.
Urolithiasis ; 46(3): 257-264, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28585182

ABSTRACT

Our previous study has shown that lime powder (LP) had an inhibitory effect against calcium oxalate stone formation. However, the precise mechanisms underlying such beneficial effect remained unclear. Our present study thus aimed to address the effect of LP on excretory level and compositions of urinary proteins using a proteomics approach. From a total of 80 calcium oxalate stone formers recruited into our 2-year randomized clinical trial of LP effect, 10 patients with comparable age and clinical parameters were selected for this proteomic study. 24-h urine specimens were collected from all subjects, at baseline (before) and after LP treatment for 6 months, and then subjected to quantitative proteomics analysis and subsequent validation by ELISA. Total urinary protein excretion was significantly decreased by LP treatment, but unaffected by placebo. Nanoflow liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) followed by quantitative analysis revealed 17 proteins whose levels were significantly altered (16 decreased and 1 increased) exclusively by LP treatment. Among these, the decrease of transferrin and increase of uromodulin were validated by ELISA. Moreover, there was a significant correlation between microalbuminuria and urinary transferrin level by Pearson's correlation test. In summary, LP treatment caused significant reduction in total urinary protein excretion and changes in urinary protein compositions that could be linked to stone inhibitory effects and might be relevant mechanisms responsible for the beneficial effects of LP to prevent kidney stone formation and recurrence.


Subject(s)
Albuminuria/drug therapy , Calcium Compounds/pharmacology , Kidney Calculi/drug therapy , Oxides/pharmacology , Renal Elimination/drug effects , Transferrin/urine , Uromodulin/urine , Adult , Albuminuria/urine , Calcium Compounds/therapeutic use , Calcium Oxalate/chemistry , Calcium Oxalate/urine , Female , Humans , Kidney/drug effects , Kidney/metabolism , Kidney Calculi/urine , Male , Middle Aged , Oxides/therapeutic use , Powders , Proteomics/methods , Tandem Mass Spectrometry/methods , Transferrin/metabolism , Uromodulin/metabolism
16.
Front Chem ; 5: 113, 2017.
Article in English | MEDLINE | ID: mdl-29270403

ABSTRACT

Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r = 0.997; p < 0.001), whereas the equally second rank included aggregated mass index and optical density (r = 0.993; p < 0.001 and r = -0.993; p < 0.001, respectively) and the equally forth were aggregation coefficient and span (r = 0.991; p < 0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

17.
Chem Biol Interact ; 246: 30-5, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26748311

ABSTRACT

Interaction between calcium oxalate crystals and renal tubular cells has been recognized as one of the key mechanisms for kidney stone formation. While crystal adhesion and internalization have been extensively investigated, subsequent phenomena (i.e. crystal degradation and dissolution) remained poorly understood. To explore these mechanisms, we used fluorescein isothiocyanate (FITC)-labelled calcium oxalate monohydrate (COM) crystals (1000 µg/ml of crystals/culture medium) to confirm crystal internalization into MDCK (Type II) renal tubular cells after exposure to the crystals for 1 h and to trace the internalized crystals. Crystal size, intracellular and extracellular fluorescence levels were measured using a spectrofluorometer for up to 48 h after crystal internalization. Moreover, markers for early endosome (Rab5), late endosome (Rab7) and lysosome (LAMP-2) were examined by laser-scanning confocal microscopy. Fluorescence imaging and flow cytometry confirmed that FITC-labelled COM crystals were internalized into MDCK cells (14.83 ± 0.85%). The data also revealed a reduction of crystal size in a time-dependent manner. In concordance, intracellular and extracellular fluorescence levels were decreased and increased, respectively, indicating crystal degradation/dissolution inside the cells and the degraded products were eliminated extracellularly. Moreover, Rab5 and Rab7 were both up-regulated and were also associated with the up-regulated LAMP-2 to form large endolysosomes in the COM-treated cells at 16-h after crystal internalization. We demonstrate herein, for the first time, that COM crystals could be degraded/dissolved by endolysosomes inside renal tubular cells. These findings will be helpful to better understand the crystal fate and protective mechanism against kidney stone formation.


Subject(s)
Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Kidney Tubules/cytology , Kidney Tubules/metabolism , Lysosomes/metabolism , Animals , Biological Transport , Biomarkers/metabolism , Crystallization , Dogs , Lysosomal-Associated Membrane Protein 2/metabolism , Madin Darby Canine Kidney Cells , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
18.
PLoS One ; 9(9): e106779, 2014.
Article in English | MEDLINE | ID: mdl-25215595

ABSTRACT

Leber's Hereditary Optic Neuropathy (LHON) is one of the commonest mitochondrial diseases. It causes total blindness, and predominantly affects young males. For the disease to develop, it is necessary for an individual to carry one of the primary mtDNA mutations 11778G>A, 14484T>C or 3460G>A. However these mutations are not sufficient to cause disease, and they do not explain the characteristic features of LHON such as the higher prevalence in males, incomplete penetrance, and relatively later age of onset. In order to explore the roles of nuclear encoded mitochondrial proteins in development of LHON, we applied a proteomic approach to samples from affected and unaffected individuals from 3 pedigrees and from 5 unrelated controls. Two-dimensional electrophoresis followed by MS/MS analysis in the mitochondrial lysate identified 17 proteins which were differentially expressed between LHON cases and unrelated controls, and 24 proteins which were differentially expressed between unaffected relatives and unrelated controls. The proteomic data were successfully validated by western blot analysis of 3 selected proteins. All of the proteins identified in the study were mitochondrial proteins and most of them were down regulated in 11778G>A mutant fibroblasts. These proteins included: subunits of OXPHOS enzyme complexes, proteins involved in intermediary metabolic processes, nucleoid related proteins, chaperones, cristae remodelling proteins and an anti-oxidant enzyme. The protein profiles of both the affected and unaffected 11778G>A carriers shared many features which differed from those of unrelated control group, revealing similar proteomic responses to 11778G>A mutation in both affected and unaffected individuals. Differentially expressed proteins revealed two broad groups: a cluster of bioenergetic pathway proteins and a cluster involved in protein quality control system. Defects in these systems are likely to impede the function of retinal ganglion cells, and may lead to the development of LHON in synergy with the primary mtDNA mutation.


Subject(s)
Down-Regulation , Energy Metabolism , Fibroblasts/pathology , Mitochondrial Proteins/metabolism , Mutation/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Proteome/metabolism , Adult , Biopsy , Blotting, Western , Case-Control Studies , Databases, Protein , Family , Female , Fibroblasts/metabolism , Humans , Male , Middle Aged , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Proteomics , Reproducibility of Results , Subcellular Fractions/metabolism , Thailand , Young Adult
19.
J Proteome Res ; 13(7): 3160-5, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24831074

ABSTRACT

Following an official announcement of the Chromosome-centric Human Proteome Project (C-HPP), the Chromosome 12 (Ch12) Consortium has been established by five representative teams from five Asian countries including Thailand (Siriraj Hospital, Mahidol University), Singapore (National University of Singapore), Taiwan (Academia Sinica), Hong Kong (The Chinese University of Hong Kong), and India (Institute of Bioinformatics). We have worked closely together to extensively and systematically analyze all missing and known proteins encoded by Ch12 for their tissue/cellular/subcellular localizations. The target organs/tissues/cells include kidney, brain, gastrointestinal tissues, blood/immune cells, and stem cells. In the later phase, post-translational modifications and functional significance of Ch12-encoded proteins as well as their associations with human diseases (i.e., immune diseases, metabolic disorders, and cancers) will be defined. We have collaborated with other chromosome teams, Human Kidney and Urine Proteome Project (HKUPP), AOHUPO Membrane Proteomics Initiative, and other existing HUPO initiatives in the Biology/Disease-Based Human Proteome Project (B/D-HPP) to delineate functional roles and medical implications of Ch12-encoded proteins. The data set to be obtained from this multicountry consortium will be an important piece of the jigsaw puzzle to fulfill the missions and goals of the C-HPP and the global Human Proteome Project (HPP).


Subject(s)
Chromosomes, Human, Pair 12/genetics , Proteome/genetics , Chromosomes, Human, Pair 12/metabolism , Humans , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Organ Specificity , Proteome/metabolism , Research Design
20.
Cell Biochem Biophys ; 67(3): 1171-9, 2013.
Article in English | MEDLINE | ID: mdl-23695784

ABSTRACT

During an initial phase of kidney stone formation, the internalization of calcium oxalate (CaOx) crystals by renal tubular cells has been thought to occur via endocytosis. However, the precise mechanism of CaOx crystal endocytosis remained unclear. In the present study, MDCK renal tubular cells were pretreated with inhibitors specific to individual endocytic pathways, including nystatin (lipid raft/caveolae-mediated), cytochalasin D (actin-dependent or macropinocytosis), and chlorpromazine (CPZ; clathrin-mediated) before exposure to plain (non-labeled), or fluorescence-labeled CaOx monohydrate (COM) crystals. Quantitative analysis by flow cytometry revealed that pretreatment with nystatin and CPZ slightly decreased the crystal internalization, whereas the cytochalasin D pretreatment caused a marked decrease in crystal uptake. Immunofluorescence study and laser-scanning confocal microscopic examination confirmed that the cytochalasin D-pretreated cells had dramatic decrease of the internalized crystals, whereas the total number of crystals interacted with the cells was unchanged (crystals could adhere but were not internalized). These data have demonstrated for the first time that renal tubular cells endocytose COM crystals mainly via macropinocytosis. These novel findings will be useful for further tracking the endocytosed crystals inside the cells during the course of kidney stone formation.


Subject(s)
Calcium Oxalate/metabolism , Endocytosis , Animals , Calcium Oxalate/chemistry , Chlorpromazine/pharmacology , Crystallization , Cytochalasin D/pharmacology , Dogs , Endocytosis/drug effects , Kidney Tubules/cytology , Kidney Tubules/drug effects , Madin Darby Canine Kidney Cells , Microscopy, Confocal , Nystatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...