Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6390, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39080345

ABSTRACT

Tryptophan (Trp) is an essential amino acid, whose metabolism is a key gatekeeper of intestinal homeostasis. Yet, its systemic effects, particularly on atherosclerosis, remain unknown. Here we show that high-fat diet (HFD) increases the activity of intestinal indoleamine 2, 3-dioxygenase 1 (IDO), which shifts Trp metabolism from the production of microbiota-derived indole metabolites towards kynurenine production. Under HFD, the specific deletion of IDO in intestinal epithelial cells leads to intestinal inflammation, impaired intestinal barrier, augmented lesional T lymphocytes and atherosclerosis. This is associated with an increase in serotonin production and a decrease in indole metabolites, thus hijacking Trp for the serotonin pathway. Inhibition of intestinal serotonin production or supplementation with indole derivatives alleviates plaque inflammation and atherosclerosis. In summary, we uncover a pivotal role of intestinal IDO in the fine-tuning of Trp metabolism with systemic effects on atherosclerosis, paving the way for new therapeutic strategies to relieve gut-associated inflammatory diseases.


Subject(s)
Atherosclerosis , Diet, High-Fat , Indoleamine-Pyrrole 2,3,-Dioxygenase , Intestinal Mucosa , Mice, Inbred C57BL , Serotonin , Tryptophan , Animals , Tryptophan/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Atherosclerosis/drug therapy , Diet, High-Fat/adverse effects , Mice , Serotonin/metabolism , Intestinal Mucosa/metabolism , Kynurenine/metabolism , Male , Gastrointestinal Microbiome , Indoles/pharmacology , Inflammation/metabolism , Mice, Knockout , Intestines/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Disease Models, Animal
2.
Cell Rep ; 42(11): 113350, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37897726

ABSTRACT

Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing ß7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.


Subject(s)
Atherosclerosis , Microbiota , Plaque, Atherosclerotic , Humans , Animals , Mice , Dysbiosis/chemically induced , Lymphocytes , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
3.
Circulation ; 143(6): 566-580, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33272024

ABSTRACT

BACKGROUND: Ischemic cardiovascular diseases, particularly acute myocardial infarction (MI), is one of the leading causes of mortality worldwide. Indoleamine 2, 3-dioxygenase 1 (IDO) catalyzes 1 rate-limiting step of L-tryptophan metabolism, and emerges as an important regulator of many pathological conditions. We hypothesized that IDO could play a key role to locally regulate cardiac homeostasis after MI. METHODS: Cardiac repair was analyzed in mice harboring specific endothelial or smooth muscle cells or cardiomyocyte or myeloid cell deficiency of IDO and challenged with acute myocardial infarction. RESULTS: We show that kynurenine generation through IDO is markedly induced after MI in mice. Total genetic deletion or pharmacological inhibition of IDO limits cardiac injury and cardiac dysfunction after MI. Distinct loss of function of IDO in smooth muscle cells, inflammatory cells, or cardiomyocytes does not affect cardiac function and remodeling in infarcted mice. In sharp contrast, mice harboring endothelial cell-specific deletion of IDO show an improvement of cardiac function as well as cardiomyocyte contractility and reduction in adverse ventricular remodeling. In vivo kynurenine supplementation in IDO-deficient mice abrogates the protective effects of IDO deletion. Kynurenine precipitates cardiomyocyte apoptosis through reactive oxygen species production in an aryl hydrocarbon receptor-dependent mechanism. CONCLUSIONS: These data suggest that IDO could constitute a new therapeutic target during acute MI.


Subject(s)
Endothelial Cells/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/therapeutic use , Kynurenine/therapeutic use , Myocardial Infarction/drug therapy , Animals , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology , Kynurenine/pharmacology , Mice , Myocardial Infarction/physiopathology
4.
Nat Med ; 24(8): 1113-1120, 2018 08.
Article in English | MEDLINE | ID: mdl-29942089

ABSTRACT

The association between altered gut microbiota, intestinal permeability, inflammation and cardiometabolic diseases is becoming increasingly clear but remains poorly understood1,2. Indoleamine 2,3-dioxygenase is an enzyme induced in many types of immune cells, including macrophages in response to inflammatory stimuli, and catalyzes the degradation of tryptophan along the kynurenine pathway. Indoleamine 2,3-dioxygenase activity is better known for its suppression of effector T cell immunity and its activation of regulatory T cells3,4. However, high indoleamine 2,3-dioxygenase activity predicts worse cardiovascular outcome5-9 and may promote atherosclerosis and vascular inflammation6, suggesting a more complex role in chronic inflammatory settings. Indoleamine 2,3-dioxygenase activity is also increased in obesity10-13, yet its role in metabolic disease is still unexplored. Here, we show that obesity is associated with an increase of intestinal indoleamine 2,3-dioxygenase activity, which shifts tryptophan metabolism from indole derivative and interleukin-22 production toward kynurenine production. Indoleamine 2,3-dioxygenase deletion or inhibition improves insulin sensitivity, preserves the gut mucosal barrier, decreases endotoxemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. These beneficial effects are due to rewiring of tryptophan metabolism toward a microbiota-dependent production of interleukin-22 and are abrogated after treatment with a neutralizing anti-interleukin-22 antibody. In summary, we identify an unexpected function of indoleamine 2,3-dioxygenase in the fine tuning of intestinal tryptophan metabolism with major consequences on microbiota-dependent control of metabolic disease, which suggests indoleamine 2,3-dioxygenase as a potential therapeutic target.


Subject(s)
Gastrointestinal Microbiome , Health , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Animals , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/blood , Fatty Liver/pathology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Inflammation/blood , Inflammation/pathology , Insulin Resistance , Interleukins/metabolism , Intestines/pathology , Kynurenine/blood , Kynurenine/metabolism , Lipopolysaccharides/blood , Male , Mice, Inbred C57BL , Obesity/blood , Obesity/pathology , Principal Component Analysis , Tryptophan/blood , Tryptophan/metabolism , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL