Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(3): 105671, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272222

ABSTRACT

Poly(ADP-ribosyl)ation (PARylation) is a critical posttranslational modification that plays a vital role in maintaining genomic stability via a variety of molecular mechanisms, including activation of replication stress and the DNA damage response. The nudix hydrolase NUDT16 was recently identified as a phosphodiesterase that is responsible for removing ADP-ribose units and that plays an important role in DNA repair. However, the roles of NUDT16 in coordinating replication stress and cell cycle progression remain elusive. Here, we report that SETD3, which is a member of the SET-domain containing protein (SETD) family, is a novel substrate for NUDT16, that its protein levels fluctuate during cell cycle progression, and that its stability is strictly regulated by NUDT16-mediated dePARylation. Moreover, our data indicated that the E3 ligase CHFR is responsible for the recognition and degradation of endogenous SETD3 in a PARP1-mediated PARylation-dependent manner. Mechanistically, we revealed that SETD3 associates with BRCA2 and promotes its recruitment to stalled replication fork and DNA damage sites upon replication stress or DNA double-strand breaks, respectively. Importantly, depletion of SETD3 in NUDT16-deficient cells did not further exacerbate DNA breaks or enhance the sensitivity of cancer cells to IR exposure, suggesting that the NUDT16-SETD3 pathway may play critical roles in the induction of tolerance to radiotherapy. Collectively, these data showed that NUDT16 functions as a key upstream regulator of SETD3 protein stability by reversing the ADP-ribosylation of SETD3, and NUDT16 participates in the resolution of replication stress and facilitates HR repair.


Subject(s)
ADP-Ribosylation , Neoplasms , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , Neoplasms/genetics , Neoplasms/radiotherapy , Poly (ADP-Ribose) Polymerase-1/genetics , Protein Processing, Post-Translational , Humans , Cell Line , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism
2.
Dev Cell ; 58(24): 2819-2821, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38113847

ABSTRACT

The microenvironment influences cell fate. In this collection of voices, researchers from the fields of cancer and regeneration highlight approaches to establish the importance of the microenvironment and discuss future directions to understand the complex interaction between cells and their surrounding environment and how this impacts on disease and regeneration.


Subject(s)
Neoplasms , Humans , Cell Differentiation , Tumor Microenvironment
3.
Cell Death Dis ; 10(12): 934, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819034

ABSTRACT

Hypoxia is commonly found in cancers. Hypoxia, due to the lack of oxygen (O2) as the electron recipient, causes inefficient electron transfer through the electron transport chain at the mitochondria leading to accumulation of reactive oxygen species (ROS) which could create irreversible cellular damages. Through hypoxia-inducible factor 1 (HIF-1) which elicits various molecular events, cells are able to overcome low O2. Knowledge about the new molecular mechanisms governed by HIF-1 is important for new therapeutic interventions targeting hypoxic tumors. Using hepatocellular carcinoma (HCC) as a model, we revealed that the HIF-1 and the Notch signaling pathways cross-talk to control mitochondrial biogenesis of cancer cells to maintain REDOX balance. From transcriptome sequencing, we found that HEY1, a transcriptional repressor, in the NOTCH pathway was consistently induced by hypoxia in HCC cell lines. We identified a strong hypoxia response element (HRE) in HEY1 by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. Transcriptome and ChIP sequencing further identified PINK1, a gene essential for mitochondrial biogenesis, as a novel transcriptional target of HEY1. HCC cells with HEY1 knockdown re-expressed PINK1. HEY1 and PINK1 expressions inversely correlated in human HCC samples. Overexpression of HEY1 and under-expression of PINK1 were detected in human HCC and associated with poor clinical outcomes. Functionally, we found that overexpression of HEY1 or knockdown of PINK1 consistently reduced mitochondrial cristae, mitochondrial mass, oxidative stress level, and increased HCC growth.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Cycle Proteins/metabolism , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/metabolism , Mitochondria/metabolism , Protein Kinases/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/genetics , HeLa Cells , Hep G2 Cells , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Protein Kinases/genetics , Transfection , Tumor Burden/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...