Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Small Methods ; : e2301804, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859633

ABSTRACT

In this study, unique BiVO4-Au-Cu2O nanosheets (NSs) are well designed and multiple charge transfer paths are consequently constructed. The X-ray photoelectron spectroscopy measurement during a light off-on-off cycle and redox capability tests of the photo-generated charge carriers confirmed the formation of Z-scheme heterojunction, which can facilitate the charge carrier separation and transfer and maintain the original strong redox potentials of the respective component in the heterojunction. The ultrathin 2D structure of the BiVO4 NSs provided sufficient surface area for the photocatalytic reaction. The local surface plasmon resonance (LSPR) effect of the electron mediator, Au NPs, enhanced the light absorption and promoted the excitation of hot electrons. The multiple charge transfer paths effectively promoted the separation and transfer of the charge carrier. The synergism of the abovementioned properties endowed the BiVO4-Au-Cu2O NSs with satisfactory photocatalytic activity in the degradation of tetracycline (Tc) with a removal rate of ≈80% within 30 min under visible light irradiation. The degradation products during the photocatalysis are confirmed by using ultra-high performance liquid chromatography-mass spectrometry and the plausible degradation pathways of Tc are consequently proposed. This work paves a strategy for developing highly efficient visible-light-driven photocatalysts with multiple charge transfer paths for removing organic contaminants in water.

2.
RSC Adv ; 14(9): 5782-5796, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362084

ABSTRACT

Biomass carbon-based materials are highly promising for supercapacitor (SC) electrodes due to their availability, environment-friendliness, and low cost. Herein, an easy energy-saving hydrothermal process was used to produce NiCo2O4/NiOOH (NiCoO) composites with biomass carbon (BC) derived from the bark of Anacardium occidentale (AO) at different synthesis time durations (2 h, 4 h, 8 h, 16 h). The structural and morphological properties of the samples were analysed using XRD, Raman spectroscopy, XPS, SEM, TEM and BET, and the results exhibit the presence of carbon inserted into the nickel-cobalt hydroxide matrix. The NiCoO@BC composite synthesized in 4 h (NiCoO@BC(4 h)) displays a good specific capacitance of 475 F g-1 at 0.5 A g-1 and a low equivalent series resistance (ESR) value of 0.36 Ω. It shows a good coulombic efficiency of 98% and retains 86% of the capacitance after 4000 cycles. The asymmetric supercapacitor (ASC) device (NiCoO@BC(4 h)//AC) assembled using activated carbon (AC) as a negative electrode displays 20 W h kg-1 energy density and 900 W kg-1 power density at 1 A g-1. The stability test shows a good coulombic efficiency of 99% and 78% capacitance retention after 15 000 cycles. These findings imply that NiCoO@BC composites have outstanding electrochemical properties, making them suitable as SC electrode materials.

3.
Nat Commun ; 14(1): 541, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725862

ABSTRACT

Integrating plasmonic nanoparticles into the photoactive metal-organic matrix is highly desirable due to the plasmonic near field enhancement, complementary light absorption, and accelerated separation of photogenerated charge carriers at the junction interface. The construction of a well-defined, intimate interface is vital for efficient charge carrier separation, however, it remains a challenge in synthesis. Here we synthesize a junction bearing intimate interface, composed of plasmonic Ag nanoparticles and matrix with silver node via a facile one-step approach. The plasmonic effect of Ag nanoparticles on the matrix is visualized through electron energy loss mapping. Moreover, charge carrier transfer from the plasmonic nanoparticles to the matrix is verified through ultrafast transient absorption spectroscopy and in-situ photoelectron spectroscopy. The system delivers highly efficient visible-light photocatalytic H2 generation, surpassing most reported metal-organic framework-based photocatalytic systems. This work sheds light on effective electronic and energy bridging between plasmonic nanoparticles and organic semiconductors.

4.
J Phys Chem A ; 126(22): 3604-3611, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35639019

ABSTRACT

The DFT+U method is frequently employed to improve the first-principles description of strongly correlated materials. However, it is prone to deliver metastable electronic minima. While these local minima of the DFT+U method are often considered to be computational artifacts, their physical meaning and relationship to true excited states remains unclear. In this work, the possibility of theoretically modeling transformations in the solid state that require thermal or optical excitations of electrons is explored, taking into account the metastable states of the computationally undemanding DFT+U formalism. For this purpose, we choose to examine the example of the VO2 metal-insulator transition. Metastable states that are located on different electronic potential energy surfaces are found to correspond to experimentally observed VO2 phases. The identified metastable electronic states can be used to model the collapse of the VO2 band gap at elevated temperatures and upon photoexcitation as well as other monoclinic-monoclinic phase transformations. The results suggest that local DFT+U minima can indeed carry physical meaning, while they remain under-reported in theoretical literature on transition metal oxides like VO2.

5.
Article in English | MEDLINE | ID: mdl-35536155

ABSTRACT

Vanadium dioxide is a promising material for novel smart window applications due to its reversible metal-insulator transition which is accompanied by a change in its optical properties. The transition temperature (TMIT) can be controlled via elemental doping, but the reduction of TMIT is generally coupled with a decrease of the optical contrast between the two phases. To better understand how the contrast is fundamentally connected to TMIT, the thermochromic properties of doped VO2 were theoretically investigated across the metal-insulator transition from first principles. Different dopants and their interaction with the VO2 host structure as well as different modes of doping were studied in detail. It was found that the transition temperature change is mainly related to the stabilization of the high-temperature metallic phase due to lattice deformations which are caused by the presence of the dopant ion. Inherent limitations to the thermochromic performance of VO2 substitutionally doped by the replacement of vanadium cations with other species were found, and alternative approaches were proposed. Specifically, a charge-neutral substitution of oxygen or an oxygen substitution in combination with interstitial doping without net charge transfer between the dopant atoms and VO2 were identified as promising avenues to ensure a low TMIT and no loss of optical contrast in vanadia-based smart window materials.

6.
Nat Commun ; 13(1): 741, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35136043

ABSTRACT

Waveguides play a pivotal role in the full deployment of terahertz communication systems. Besides signal transporting, innovative terahertz waveguides are required to provide versatile signal-processing functionalities. Despite fundamental components, such as Bragg gratings, have been recently realized, they typically rely on complex hybridization, in turn making it extremely challenging to go beyond the most elementary functions. Here, we propose a universal approach, in which multiscale-structured Bragg gratings can be directly etched on metal-wires. Such an approach, in combination with diverse waveguide designs, allows for the realization of a unique platform with remarkable structural simplicity, yet featuring unprecedented signal-processing capabilities. As an example, we introduce a four-wire waveguide geometry, amenable to support the low-loss and low-dispersion propagation of polarization-division multiplexed terahertz signals. Furthermore, by engraving on the wires judiciously designed Bragg gratings based on multiscale structures, it is possible to independently manipulate two polarization-division multiplexed terahertz signals. This platform opens up new exciting perspectives for exploiting the polarization degree of freedom and ultimately boosting the capacity and spectral efficiency of future terahertz networks.

7.
Molecules ; 26(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34577012

ABSTRACT

Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies, including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds. We summarize our findings and those of others which suggest that density-driven descriptors are, in certain cases, better suited to characterize the mechanism of redox reactions, especially when anion redox is involved, which is the blind spot of the FOS ansatz.

8.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924162

ABSTRACT

Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary composites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation of MoO2 and Mo2C nanostructures embedded in the porous carbon framework is confirmed by extensive structural characterization and elemental mapping analysis. The best composite when used as electrodes in a symmetric supercapacitor (PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1) exhibited a good cell capacitance of 115 F g-1 with an associated high specific energy of 51.8 W h kg-1, as well as a specific power of 0.9 kW kg-1 at a cell voltage of 1.8 V at 1 A g-1. Increasing the specific current to 20 A g-1 still showcased a device capable of delivering up to 30 W h kg-1 specific energy and 18 kW kg-1 of specific power. Additionally, with a great cycling stability, a 99.8% coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic charge-discharge cycles at 10 A g-1. The voltage holding test after a 160 h floating time resulted in increase of the specific capacitance from 74.7 to 90 F g-1 at 10 A g-1 for this storage device. The remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal carbide (MoO2/Mo2C) with the interconnected porous carbon. The PAC/MoO2/Mo2C ternary composites highlight promising Mo-based electrode materials suitable for high-performance energy storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the electrochemical performance of porous carbon materials.

9.
Nat Commun ; 12(1): 1231, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33623017

ABSTRACT

Conversion of clean solar energy to chemical fuels is one of the promising and up-and-coming applications of metal-organic frameworks. However, fast recombination of photogenerated charge carriers in these frameworks remains the most significant limitation for their photocatalytic application. Although the construction of homojunctions is a promising solution, it remains very challenging to synthesize them. Herein, we report a well-defined hierarchical homojunction based on metal-organic frameworks via a facile one-pot synthesis route directed by hollow transition metal nanoparticles. The homojunction is enabled by two concentric stacked nanoplates with slightly different crystal phases. The enhanced charge separation in the homojunction was visualized by in-situ surface photovoltage microscopy. Moreover, the as-prepared nanostacks displayed a visible-light-driven carbon dioxide reduction with very high carbon monooxide selectivity, and excellent stability. Our work provides a powerful platform to synthesize capable metal-organic framework complexes and sheds light on the hierarchical structure-function relationships of metal-organic frameworks.

10.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499063

ABSTRACT

We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the static field overcomes the THz field strength, without the requirement of an additional demodulating circuit. Moreover, we introduce a differential configuration, which extends the applicability of the homodyne scheme to higher THz field strengths, also leading a two-fold improvement of the dynamic range compared to the heterodyne counterpart. Finally, we demonstrate that, by reversing the sign of the static voltage, it is possible to directly retrieve the absolute THz pulse polarity. The homodyne configuration makes the SSBCD technique of much easier access, leading to a vast range of field-resolved applications.

11.
Sci Rep ; 11(1): 1620, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33452287

ABSTRACT

Phase competition in transition metal oxides has attracted remarkable interest for fundamental aspects and technological applications. Here, we report a concurrent study of the phase transitions in undoped and Cr-doped VO[Formula: see text] thin films. The structural, morphological and electrical properties of our films are examined and the microstructural effect on the metal-insulator transition (MIT) are highlighted. We further present a distinctive approach for analyzing the Raman data of undoped and Cr-doped VO[Formula: see text] thin films as a function of temperature, which are quantitatively correlated to the electrical measurements of VO[Formula: see text] films to give an insight into the coupling between the structural phase transition (SPT) and the MIT. These data are also combined with reported EXAFS measurements and a connection between the Raman intensities and the mean Debye-Waller factors [Formula: see text] is established. We found that the temperature dependence of the [Formula: see text] as calculated from the Raman intensity retraces the temperature profile of the [Formula: see text] as obtained from the EXAFS data analysis. Our findings provide an evidence on the critical role of the thermal vibrational disorder in the VO[Formula: see text] phase transitions. Our study demonstrates that correlating Raman data with EXAFS analysis, the lattice and electronic structural dynamics can be probed.

12.
J Colloid Interface Sci ; 569: 332-345, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32126346

ABSTRACT

Nitrogen (N) doping of porous carbon materials is an effective strategy for enhancing the electrochemical performance of electrode materials. Herein, we report on ex-situ (post) nitrogen-doped porous carbons prepared using a biomass waste, peanut shell (PS) as a carbon source and melamine as the nitrogen source. The synthesis method involved a two-step mechanism, initial chemical activation of the PS using KOH and post N-doping of the activated carbon. The effect of the activating agent/precursor ratio and the ex-situ N-doping on the structural, textural, electrochemical properties of the porous carbons was studied. The ex-situ N-doped porous carbon with an optimum amount of KOH to PS exhibited the best capacitance performance with a specific surface area (SSA) of 1442 m2 g-1 and an enriched nitrogen content (3.2 at %). The fabricated symmetric device exhibited a 251.2 F g-1 specific capacitance per electrode at a gravimetric current of 1 A g-1 in aqueous electrolyte (2.5 M KNO3) at a wide cell voltage of 2.0 V. A specific energy of 35 Wh kg-1 with a corresponding specific power of 1 kW kg-1 at 1 A g-1 was delivered with the device still retaining up to 22 Wh kg-1 and a 20 kW kg-1 specific power even at 20 A g-1. Moreover, long term device stability was exhibited with an 83.2% capacity retention over 20 000 charge/discharge cycles and also a good rate capability after 180 h of floating at 5 A g-1. This great performance of the symmetric supercapacitor can be correlated to the surface porosity and post nitrogen-doping effect which increased the electrochemically-active sites resulting in a remarkable charge storage capability.

13.
ACS Appl Mater Interfaces ; 11(14): 13185-13193, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30892871

ABSTRACT

The photoelectric properties of multiferroic double-perovskite Bi2FeCrO6 (BFCO), such as above-band gap photovoltages, switchable photocurrents, and bulk photovoltaic effects, have recently been explored for potential applications in solar technology. Here, we report the fabrication of photoelectrodes based on n-type ferroelectric (FE) semiconductor BFCO heterojunctions coated with p-type transparent conducting oxides (TCOs) by pulsed laser deposition and their application for photoelectrochemical (PEC) water oxidation. The photocatalytic properties of the bare BFCO photoanodes can be improved by controlling the FE polarization state. However, the charge recombination as well as the limited charge transfer kinetics in the photoanode/electrolyte cause major energy loss and thus hinder the PEC performance. We show that this problem may be addressed by the deposition of an ultrathin p-type NiO layer on the photoanode to enhance the charge transport kinetics and reduce charge recombination at surface-trapped states for increased surface band bending. A fourfold enhancement of photocurrent density, up to 0.4 mA cm-2 (at +1.23 V vs RHE), a best performance of stability over 4 h, and a high incident photon-to-current efficiency (∼3.7%) were achieved under 1 sun illumination in such p-NiO/n-BFCO heterojunction photoanodes. These studies reveal the optimization of PEC performance by polarization switching of BFCO and the successful achievement of p-TCOs/n-FE heterojunction photoanodes that are able to sustain water oxidation that is stable for many hours.

14.
Proc Natl Acad Sci U S A ; 116(2): 450-455, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30587594

ABSTRACT

We combine ultrafast electron diffraction and time-resolved terahertz spectroscopy measurements to link structure and electronic transport properties during the photoinduced insulator-metal transitions in vanadium dioxide. We determine the structure of the metastable monoclinic metal phase, which exhibits antiferroelectric charge order arising from a thermally activated, orbital-selective phase transition in the electron system. The relative contribution of the photoinduced monoclinic and rutile metals to the time-dependent and pump-fluence-dependent multiphase character of the film is established, as is the respective impact of these two distinct phase transitions on the observed changes in terahertz conductivity. Our results represent an important example of how light can control the properties of strongly correlated materials and demonstrate that multimodal experiments are essential when seeking a detailed connection between ultrafast changes in optical-electronic properties and lattice structure.

15.
ChemSusChem ; 11(21): 3783-3789, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30215886

ABSTRACT

An effective cocatalyst is usually required to improve the performance of photoelectrochemical (PEC) water splitting catalysts. A fluorine-doped FeOOH (F:FeOOH) cocatalyst on a hematite photoanode was used to lower the onset potential by 140 mV and significantly improve the PEC performance. Moreover, a more effective dual cocatalytic system was prepared by subsequent loading of a FeNiOOH cocatalyst, which resulted in a further decrease of the onset potential by 270 mV. The final onset potential of the Fe2 O3 /F:FeOOH/FeNiOOH photoanode was lowered to 0.45 V versus the reversible hydrogen electrode (RHE), which is one of the lowest onset potential values ever reported for hematite photoanodes. The photocurrent also dramatically increased by a factor of approximately 3 to 0.9 mA cm-2 at 1.0 V versus RHE. Based on the structural, chemical, and electrochemical impedance spectroscopy characterization, the enhanced performance was attributed to the F:FeOOH overlayer, which reduced the surface recombination and accelerated the oxygen evolution reaction activity, and the FeNiOOH cocatalyst, which further enhanced the reaction kinetics. The facile preparation of the F:FeOOH cocatalyst and the design of the dual cocatalytic system will allow the development of high-performance hematite photoanodes.

16.
J Phys Chem Lett ; 9(18): 5317-5326, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30153727

ABSTRACT

Plasmonic Au nanoparticle (NP)-loaded hierarchical hollow porous TiO2 spheres are designed and synthesized with the purpose of enhancing the overall catalytic activity by introducing the Au plasmonic effect into the system, where Au NPs themselves are catalytically active. The constructed nanohybrid exhibits both high activity in 4-nitrophenol reduction, compared to all of the previously reported Au-based catalysts, and high selectivity. The synergy of the inherent catalytic property of Au NPs and the plasmonic effect (mainly via hot electron transfer) under irradiation is confirmed by a series of control experiments. The specifically designed, porous hollow structure also greatly contributes to the good catalytic activity because it provides a large surface area, facilitates reactant adsorption, and hinders charge recombination. In addition, theoretical calculations reveal that such a structure also leads to an increase in light absorption of about 21% in the range of 400-800 nm with respect to a uniform water-TiO2 background featuring the same filling factor. This work provides insight into the rational design of plasmon-enhanced catalysts that will show their versatility in various electro-/photocatalysis.

17.
Sci Rep ; 8(1): 7153, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29740103

ABSTRACT

This work examines the synthesis of single phase VO2 (B) thin films on LaAlO3 (100) substrates, and the naturally-occurring and induced subsequent growth of VO2 (M) phase on VO2 (B) films. First, the thickness (t) dependence of structural, morphological and electrical properties of VO2 films is investigated, evidencing that the growth of VO2 (B) phase is progressively replaced by that of VO2 (M) when t > ~11 nm. This change originates from the relaxation of the substrate-induced strain in the VO2 (B) films, as corroborated by the simultaneous increase of surface roughness and decrease of the c-axis lattice parameter towards that of bulk VO2 (B) for such films, yielding a complex mixed-phase structure composed of VO2 (B)/VO2 (M) phases, accompanied by the emergence of the VO2 (M) insulator-to-metal phase transition. Second, the possibility of inducing this phase conversion, through a proper surface modification of the VO2 (B) films via plasma treatment, is demonstrated. These natural and induced VO2 (M) growths not only provide substantial insights into the competing nature of phases in the complex VO2 polymorphs system, but can also be further exploited to synthesize VO2 (M)/VO2 (B) heterostructures at the micro/nanoscale for advanced electronics and energy applications.

18.
ACS Appl Mater Interfaces ; 10(15): 12790-12797, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29565117

ABSTRACT

Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (<3.0 eV), high absorption coefficient, and tunable internal ferroelectric (FE) polarization. A high-speed switchable photodiode based on multiferroic Bi2FeCrO6 (BFCO)/SrRuO3 (SRO)-layered heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W-1, which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.

19.
ACS Appl Mater Interfaces ; 10(7): 6498-6504, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29401370

ABSTRACT

Performance of bulk heterojunction polymer solar cells (PSCs) highly relies on the morphology of the photoactive layer involving conjugated polymers and fullerene derivatives as donors and acceptors, respectively. Herein, butylamine was found to be able to optimize the morphology of the donor/acceptor (D/A) film composed of a blend of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). Compared to the commonly used alkane dithiols and halogenated additives with high boiling points, butylamine has a much lower boiling point between 77 and 79 °C, and it is also much "greener". A specific interaction between butylamine and PCBM was demonstrated to account for the morphology improvement. Essentially, butylamine can selectively dissolve PCBM in the P3HT:PCBM blend and facilitate the diffusion of PCBM in the film fabrication processes. Atomic force microscopy and X-ray photoelectron spectroscopy investigations confirmed the formation of the P3HT-enriched top surface and the abundance of PCBM at the bottom side, i.e., the formation of vertical phase segregation, as a consequence of the specific PCBM-butylamine interaction. The D/A film with inhomogeneously distributed D and A components in the vertical film direction, with more P3HT at the hole extraction side and more PCBM at the electron extraction side, enables more efficient charge extraction in the D/A film, reflected by the largely enhanced fill factor. The power conversion efficiency of devices reached 4.03 and 4.61%, respectively, depending on the thickness of the D/A film, and these are among the best values reported for P3HT:PCBM-based devices. As compared to the devices fabricated without the introduction of butylamine under otherwise the same processing conditions, they represented 19.6 and 21.6% improvement in the efficiency, respectively. The discovery of butylamine as a new, effective additive in enhancing the performance of PSCs strongly suggests that the differential affinity of additives toward donors and acceptors likely plays a more important role in morphology optimization than their boiling point, different from what was reported previously. The finding provides useful information for realizing large-area PSC fabrication, where a "greener" additive is always preferred.

20.
Langmuir ; 34(5): 1865-1872, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29343062

ABSTRACT

Nanocomposite thin films of TiO2 in a polymer-like matrix are grown in a filamentary argon (Ar) dielectric barrier discharge (DBD) from a suspension of TiO2 nanoparticles in isopropanol (IPA). The sinusoidal voltage producing the plasma is designed to independently control the matrix growth rate and the transport of nanoparticle (NP) aggregates to the surface. The useful FSK (frequency shift keying) modulation mode is chosen to successively generate two sinusoidal voltages: a high frequency of 15 kHz and a low frequency ranging from 0.5 to 3 kHz. The coating surface coverage by the NPs and the thickness of the matrix are measured as a function of the FSK parameters. The duty cycle between these two signals is varied from 0 to 100%. It is observed that the matrix thickness is mainly controlled by the power of the discharge, which largely depends on the high-frequency value. The quantity of NPs deposited in the composite thin film is proportional to the duration of the low frequency applied. The FSK waveform has a double modulation effect, allowing us to obtain a uniform coating as the NPs are not affected by the high frequency and the matrix growth rate is limited when the low frequency is applied. When it is close to a frequency limit, the low frequency acts like a filter for the NP aggregates. The higher the frequency, the smaller the size of the aggregates transferred to the surface. By changing only the FSK modulation parameters, the thin film can be switched from superhydrophobic to superhydrophilic, and under suitable conditions, a nanocomposite thin film is obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...