Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Elife ; 122024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251682

ABSTRACT

Our prior study (Tarasov et al., 2022) discovered that numerous adaptive mechanisms emerge in response to cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) which included overexpression of a large number of proteins. Here, we conducted an unbiased phosphoproteomics analysis in order to determine the role of altered protein phosphorylation in the adaptive heart performance and protection profile of adult TGAC8 left ventricle (LV) at 3-4 months of age, and integrated the phosphoproteome with transcriptome and proteome. Based on differentially regulated phosphoproteins by genotype, numerous stress-response pathways within reprogrammed TGAC8 LV, including PKA, PI3K, and AMPK signaling pathways, predicted upstream regulators (e.g. PDPK1, PAK1, and PTK2B), and downstream functions (e.g. cell viability, protein quality control), and metabolism were enriched. In addition to PKA, numerous other kinases and phosphatases were hyper-phosphorylated in TGAC8 vs. WT. Hyper-phosphorylated transcriptional factors in TGAC8 were associated with increased mRNA transcription, immune responses, and metabolic pathways. Combination of the phosphoproteome with its proteome and with the previously published TGAC8 transcriptome enabled the elucidation of cardiac performance and adaptive protection profiles coordinately regulated at post-translational modification (PTM) (phosphorylation), translational, and transcriptional levels. Many stress-response signaling pathways, i.e., PI3K/AKT, ERK/MAPK, and ubiquitin labeling, were consistently enriched and activated in the TGAC8 LV at transcriptional, translational, and PTM levels. Thus, reprogramming of the cardiac phosphoproteome, proteome, and transcriptome confers resilience to chronic adenylyl cyclase-driven stress. We identified numerous pathways/function predictions via gene sets, phosphopeptides, and phosphoproteins, which may point to potential novel therapeutic targets to enhance heart adaptivity, maintaining heart performance while avoiding cardiac dysfunction.


Subject(s)
Proteome , Resilience, Psychological , Adult , Humans , Adenylyl Cyclases/genetics , Transcriptome , Phosphatidylinositol 3-Kinases , Phosphoproteins/genetics , 3-Phosphoinositide-Dependent Protein Kinases
2.
Fortune J Health Sci ; 6(3): 332-356, 2023.
Article in English | MEDLINE | ID: mdl-37920273

ABSTRACT

Advancing age is the most important risk factor for cardiovascular diseases (CVDs). Two types of cells, within the heart pacemaker, sinoatrial node (SAN), and within the left ventricle (LV), control two crucial characteristics of heart function, heart beat rate and contraction strength. As age advances, the heart's structure becomes remodeled, and SAN and LV cell functions deteriorate, thus increasing the risk for CVDs. However, the different molecular features of age-associated changes in SAN and LV cells have never been compared in omics scale in the context of aging. We applied deep RNA sequencing to four groups of samples, young LV, old LV, young SAN and old SAN, followed by numerous bioinformatic analyses. In addition to profiling the differences in gene expression patterns between the two heart chambers (LV vs. SAN), we also identified the chamber-specific concordant or discordant age-associated changes in: (1) genes linked to energy production related to cardiomyocyte contraction, (2) genes related to post-transcriptional processing, (3) genes involved in KEGG longevity regulating pathway, (4) prolongevity and antilongevity genes recorded and curated in the GenAge database, and (5) CVD marker genes. Our bioinformatic analysis also predicted the regulation activities and mapped the expression of upstream regulators including transcription regulators and post-transcriptional regulator miRNAs. This comprehensive analysis promotes our understanding of regulation of heart functions and will enable discovery of gene-specific therapeutic targets of CVDs in advanced age.

3.
Lasers Surg Med ; 55(3): 278-293, 2023 03.
Article in English | MEDLINE | ID: mdl-36821717

ABSTRACT

BACKGROUND: Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS: Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-ß1 levels were assessed following sacrifice. RESULTS: During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-ß1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION: PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-ß1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.


Subject(s)
COVID-19 , Low-Level Light Therapy , Humans , Mice , Animals , Infant , Transforming Growth Factor beta1 , Low-Level Light Therapy/methods , Aging , Heart
4.
Elife ; 112022 12 14.
Article in English | MEDLINE | ID: mdl-36515265

ABSTRACT

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.


Subject(s)
Adaptation, Physiological , Myocytes, Cardiac , Stress, Physiological , Animals , Mice , Heart Failure/genetics , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy/physiopathology , Mice, Transgenic , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Humans
5.
Cells ; 11(21)2022 11 04.
Article in English | MEDLINE | ID: mdl-36359893

ABSTRACT

Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein-protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.


Subject(s)
14-3-3 Proteins , Proteomics , Mice , Animals , 14-3-3 Proteins/metabolism , Mitochondria/metabolism , Heart , Immunoprecipitation
6.
Front Neurosci ; 13: 615, 2019.
Article in English | MEDLINE | ID: mdl-31275103

ABSTRACT

Heart rate (HR) and HR variability (HRV), predictors of over-all organism health, are widely believed to be driven by autonomic input to the sinoatrial node (SAN), with sympathetic input increasing HR and reducing HRV. However, variability in spontaneous beating intervals in isolated SAN tissue and single SAN cells, devoid of autonomic neural input, suggests that clocks intrinsic to SAN cells may also contribute to HR and HRV in vivo. We assessed contributions of both intrinsic and autonomic neuronal input mechanisms of SAN cell function on HR and HRV via in vivo, telemetric EKG recordings. This was done in both wild type (WT) mice, and those in which adenylyl cyclase type 8 (ADCY8), a main driver of intrinsic cAMP-PKA-Ca2+ mediated pacemaker function, was overexpressed exclusively in the heart (TGAC8). We hypothesized that TGAC8 mice would: (1) manifest a more coherent pattern of HRV in vivo, i.e., a reduced HRV driven by mechanisms intrinsic to SAN cells, and less so to modulation by autonomic input and (2) utilize unique adaptations to limit sympathetic input to a heart with high levels of intrinsic cAMP-Ca2+ signaling. Increased adenylyl cyclase (AC) activity in TGAC8 SAN tissue was accompanied by a marked increase in HR and a concurrent marked reduction in HRV, both in the absence or presence of dual autonomic blockade. The marked increase in intrinsic HR and coherence of HRV in TGAC8 mice occurred in the context of: (1) reduced HR and HRV responses to ß-adrenergic receptor (ß-AR) stimulation; (2) increased transcription of genes and expression of proteins [ß-Arrestin, G Protein-Coupled Receptor Kinase 5 (GRK5) and Clathrin Adaptor Protein (Dab2)] that desensitize ß-AR signaling within SAN tissue, (3) reduced transcripts or protein levels of enzymes [dopamine beta-hydorxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT)] required for catecholamine production in intrinsic cardiac adrenergic cells, and (4) substantially reduced plasma catecholamine levels. Thus, mechanisms driven by cAMP-PKA-Ca2+ signaling intrinsic to SAN cells underlie the marked coherence of TGAC8 mice HRV. Adaptations to limit additional activation of AC signaling, via decreased neuronal sympathetic input, are utilized to ensure the hearts survival and prevent Ca2+ overload.

7.
Circ Arrhythm Electrophysiol ; 11(6): e005896, 2018 06.
Article in English | MEDLINE | ID: mdl-29880528

ABSTRACT

BACKGROUND: Spontaneous firing of sinoatrial node cells (SANCs) is regulated by cAMP-mediated, PKA (protein kinase A)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from RyRs (ryanodine receptors). LCRs occur during diastolic depolarization and activate an inward Na+/Ca2+ exchange current that accelerates diastolic depolarization rate prompting the next action potential. PDEs (phosphodiesterases) regulate cAMP-mediated signaling; PDE3/PDE4 represent major PDE activities in SANC, but how they modulate LCRs and basal spontaneous SANC firing remains unknown. METHODS: Real-time polymerase chain reaction, Western blot, immunostaining, cellular perforated patch clamping, and confocal microscopy were used to elucidate mechanisms of PDE-dependent regulation of cardiac pacemaking. RESULTS: PDE3A, PDE4B, and PDE4D were the major PDE subtypes expressed in rabbit SANC, and PDE3A was colocalized with α-actinin, PDE4D, SERCA (sarcoplasmic reticulum Ca2+ ATP-ase), and PLB (phospholamban) in Z-lines. Inhibition of PDE3 (cilostamide) or PDE4 (rolipram) alone increased spontaneous SANC firing by ≈20% (P<0.05) and ≈5% (P>0.05), respectively, but concurrent PDE3+PDE4 inhibition increased spontaneous firing by ≈45% (P<0.01), indicating synergistic effect. Inhibition of PDE3 or PDE4 alone increased L-type Ca2+ current (ICa,L) by ≈60% (P<0.01) or ≈5% (P>0.05), respectively, and PLB phosphorylation by ≈20% (P>0.05) each, but dual PDE3+PDE4 inhibition increased ICa,L by ≈100% (P<0.01) and PLB phosphorylation by ≈110% (P<0.05). Dual PDE3+PDE4 inhibition increased the LCR number and size (P<0.01) and reduced the SR (sarcoplasmic reticulum) Ca2+ refilling time (P<0.01) and the LCR period (time from action potential-induced Ca2+ transient to subsequent LCR; P<0.01), leading to decrease in spontaneous SANC cycle length (P<0.01). When RyRs were disabled by ryanodine and LCRs ceased, dual PDE3+PDE4 inhibition failed to increase spontaneous SANC firing. CONCLUSIONS: Basal cardiac pacemaker function is regulated by concurrent PDE3+PDE4 activation which operates in a synergistic manner via decrease in cAMP/PKA phosphorylation, suppression of LCR parameters, and prolongation of the LCR period and spontaneous SANC cycle length.


Subject(s)
Action Potentials , Biological Clocks , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Heart Rate , Sinoatrial Node/enzymology , Action Potentials/drug effects , Animals , Calcium Signaling , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Enzyme Activation , Heart Rate/drug effects , Kinetics , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism , Sinoatrial Node/cytology , Sinoatrial Node/drug effects
8.
Cell Rep ; 18(2): 571-582, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28076798

ABSTRACT

Pluripotent stem cells (PSCs) offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs). Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases.


Subject(s)
Cardiomyopathies/therapy , Cell Differentiation , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Stem Cell Transplantation , Aging , Animals , Animals, Newborn , Calcium/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cell Shape , Disease Models, Animal , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/ultrastructure , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Myocardial Contraction , Phenotype , Sequence Analysis, RNA , Single-Cell Analysis
9.
J Am Heart Assoc ; 5(4): e003277, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27098966

ABSTRACT

BACKGROUND: Cyclic guanosine monophosphate-protein kinase G-phosphodiesterase 5 signaling may be disturbed in heart failure (HF) with preserved ejection fraction, contributing to cardiac remodeling and dysfunction. The purpose of this study was to manipulate cyclic guanosine monophosphate signaling using the dipeptidyl-peptidase 4 inhibitor saxagliptin and phosphodiesterase 5 inhibitor tadalafil. We hypothesized that preservation of cyclic guanosine monophosphate cGMP signaling would attenuate pathological cardiac remodeling and improve left ventricular (LV) function. METHODS AND RESULTS: We assessed LV hypertrophy and function at the organ and cellular level in aortic-banded pigs. Concentric hypertrophy was equal in all groups, but LV collagen deposition was increased in only HF animals. Prevention of fibrotic remodeling by saxagliptin and tadalafil was correlated with neuropeptide Y plasma levels. Saxagliptin better preserved integrated LV systolic and diastolic function by maintaining normal LV chamber volumes and contractility (end-systolic pressure-volume relationship, preload recruitable SW) while preventing changes to early/late diastolic longitudinal strain rate. Function was similar to the HF group in tadalafil-treated animals including increased LV contractility, reduced chamber volume, and decreased longitudinal, circumferential, and radial mechanics. Saxagliptin and tadalafil prevented a negative cardiomyocyte shortening-frequency relationship observed in HF animals. Saxagliptin increased phosphodiesterase 5 activity while tadalafil increased cyclic guanosine monophosphate levels; however, neither drug increased downstream PKG activity. Early mitochondrial dysfunction, evident as decreased calcium-retention capacity and Complex II-dependent respiratory control, was present in both HF and tadalafil-treated animals. CONCLUSIONS: Both saxagliptin and tadalafil prevented increased LV collagen deposition in a manner related to the attenuation of increased plasma neuropeptide Y levels. Saxagliptin appears superior for treating heart failure with preserved ejection fraction, considering its comprehensive effects on integrated LV systolic and diastolic function.


Subject(s)
Adamantane/analogs & derivatives , Cyclic GMP/physiology , Dipeptides/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Signal Transduction/drug effects , Tadalafil/pharmacology , Ventricular Function, Left/drug effects , Adamantane/pharmacology , Animals , Atrial Natriuretic Factor/blood , Disease Models, Animal , Echocardiography , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/drug therapy , Male , Natriuretic Peptide, Brain/blood , Neuropeptide Y/blood , Swine , Swine, Miniature
11.
Sci Transl Med ; 7(319): 319ra207, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26702095

ABSTRACT

Uncoordinated contraction from electromechanical delay worsens heart failure pathophysiology and prognosis, but restoring coordination with biventricular pacing, known as cardiac resynchronization therapy (CRT), improves both. However, not every patient qualifies for CRT. We show that heart failure with synchronous contraction is improved by inducing dyssynchrony for 6 hours daily by right ventricular pacing using an intracardiac pacing device, in a process we call pacemaker-induced transient asynchrony (PITA). In dogs with heart failure induced by 6 weeks of atrial tachypacing, PITA (starting on week 3) suppressed progressive cardiac dilation as well as chamber and myocyte dysfunction. PITA enhanced ß-adrenergic responsiveness in vivo and normalized it in myocytes. Myofilament calcium response declined in dogs with synchronous heart failure, which was accompanied by sarcomere disarray and generation of myofibers with severely reduced function, and these changes were absent in PITA-treated hearts. The benefits of PITA were not replicated when the same number of right ventricular paced beats was randomly distributed throughout the day, indicating that continuity of dyssynchrony exposure is necessary to trigger the beneficial biological response upon resynchronization. These results suggest that PITA could bring the benefits of CRT to the many heart failure patients with synchronous contraction who are not CRT candidates.


Subject(s)
Disease Progression , Heart Failure/pathology , Heart Failure/therapy , Pacemaker, Artificial , Animals , Calcium/metabolism , Dogs , Heart Failure/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myofibrils/metabolism , Proteomics , Receptors, Adrenergic, beta/metabolism , Sarcomeres/metabolism
12.
Springerplus ; 4: 592, 2015.
Article in English | MEDLINE | ID: mdl-26543727

ABSTRACT

BACKGROUND: Currently there is no reliable medical treatment for aortic regurgitation (AR). METHODS: Thirty-nine Sprague-Dawley rats underwent creation of AR or sham operation. Treated rats were assigned to early or late institution of sildenafil therapy (100 mg/kg/day) for a total of 10 weeks. Treatment-effects were measured by serial echocardiography, invasive hemodynamic measurements, and tissue analysis. RESULTS: Rats assigned to early treatment developed less remodeling than untreated rats. Thus, left ventricular (LV) dilation was blunted by sildenafil with end-systolic diameter being significantly smaller (6.6 ± 0.4 vs. 7.7 ± 0.4 mm, respectively, p < 0.05). Also, LV wall thickness was significantly decreased in treated rats compared to controls (2.23 ± 0.08 vs. 2.16 ± 0.05 mm, p < 0.01). Fractional shortening was improved by treatment (p < 0.05). Myocardial fibrosis was borderline decreased by treatment (p = 0.09). Akt was increased in treated compared to controls (p < 0.05). CONCLUSION: Sildenafil slightly inhibits LV remodeling and improves fractional shortening in rats with AR when treatment is initiated early.

13.
Diabetes ; 64(10): 3573-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26109417

ABSTRACT

Contractile dysfunction and increased deposition of O-linked ß-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined ß-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.


Subject(s)
Acetylglucosamine/analogs & derivatives , Calcium/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/metabolism , Acetylglucosamine/metabolism , Animals , Diabetes Mellitus, Experimental/pathology , Gene Expression Regulation, Enzymologic , Humans , Male , Myocardium/pathology , Myocardium/ultrastructure , Myofibrils/metabolism , Rats , Rats, Sprague-Dawley , Sarcomeres/enzymology , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism
14.
Circulation ; 131(25): 2202-2216, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-25995320

ABSTRACT

BACKGROUND: Biomarkers that predict response to cardiac resynchronization therapy (CRT) in heart failure patients with dyssynchrony (HFDYS) would be clinically important. Circulating extracellular microRNAs (miRNAs) have emerged as novel biomarkers that may also play important functional roles, but their relevance as markers for CRT response has not been examined. METHODS AND RESULTS: Comprehensive miRNA polymerase chain reaction arrays were used to assess baseline levels of 766 plasma miRNAs in patients undergoing clinically indicated CRT in an initial discovery set (n=12) with and without subsequent echocardiographic improvement at 6 months after CRT. Validation of candidate miRNAs in 61 additional patients confirmed that baseline plasma miR-30d was associated with CRT response (defined as an increase in left ventricular ejection fraction ≥10%). MiR-30d was enriched in coronary sinus blood and increased in late-contracting myocardium in a canine model of HFDYS, indicating cardiac origin with maximal expression in areas of high mechanical stress. We examined the functional effects of miR-30d in cultured cardiomyocytes and determined that miR-30d is expressed in cardiomyocytes and released in vesicles in response to mechanical stress. Overexpression of miR-30d in cultured cardiomyocytes led to cardiomyocyte growth and protected against apoptosis by targeting the mitogen-associated kinase 4, a downstream effector of tumor necrosis factor. In HFDYS patients, miR-30d plasma levels inversely correlated with high-sensitivity troponin T, a marker of myocardial necrosis. CONCLUSIONS: Baseline plasma miR-30d level is associated with response to CRT in HFDYS in this translational pilot study. MiR-30d increase in cardiomyocytes correlates with areas of increased wall stress in HFDYS and is protective against deleterious tumor necrosis factor signaling.


Subject(s)
Apoptosis/physiology , Cardiac Resynchronization Therapy , Heart Failure/blood , MicroRNAs/blood , Myocytes, Cardiac/physiology , Translational Research, Biomedical , Aged , Aged, 80 and over , Animals , Biomarkers/blood , Cardiac Resynchronization Therapy/trends , Dogs , Female , Heart Failure/diagnosis , Heart Failure/therapy , Humans , Male , Middle Aged , Pilot Projects , Rats , Rats, Sprague-Dawley , Translational Research, Biomedical/trends , Treatment Outcome
15.
Cardiovasc Res ; 102(1): 24-34, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24413773

ABSTRACT

AIMS: The ultimate cause of heart failure (HF) is not known to date. The cytoskeletal protein desmin is differentially modified and forms amyloid-like oligomers in HF. We postulated that desmin post-translational modifications (PTMs) could drive aberrant desmin aggregation in HF. Therefore, we identified these PTMs and investigated their impact on desmin amyloidogenicity in human and experimental HF. METHODS AND RESULTS: We detected increased levels of selectively phosphorylated and cleaved desmin in a canine pacing model of dyssynchronous HF (DHF) compared with either controls or animals treated with cardiac resynchronization therapy (CRT). This unique animal model combines clinically relevant features with the possibility of a partly rescued phenotype. We confirmed analogous changes in desmin modifications in human HF and identified two phosphorylation sites within a glycogen synthase kinase 3 (GSK3) consensus sequence. Desmin-positive oligomers were also increased in DHF hearts compared with controls. Their amyloid properties were decreased by treatment with CRT or an anti-amyloid small molecule. Finally, we confirmed GSK3's involvement with desmin phosphorylation using an in vitro model. CONCLUSIONS: Based on these findings, we postulate a new mechanism of cardiac toxicity based on the PTM-driven accumulation of desmin amyloid-like oligomers. Phosphorylation and cleavage as well as oligomers formation are reduced by treatment (CRT) indicating a relationship between the three. Finally, the decrease of desmin amyloid-like oligomers with CRT or small molecules points both to a general mechanism of HF based on desmin toxicity that is independent of protein mutations and to novel potential therapies.


Subject(s)
Desmin/metabolism , Heart Failure/metabolism , Protein Aggregates , Animals , Cardiac Resynchronization Therapy , Dogs , Glycogen Synthase Kinase 3/metabolism , Heart Failure/etiology , Mutation/genetics , Phosphorylation/physiology , Protein Processing, Post-Translational/physiology , Proteomics/methods
16.
J Cardiovasc Transl Res ; 6(5): 852-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23888404

ABSTRACT

The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging one or two valve cusps, resulting in eccentric remodeling and left ventricular dysfunction, with no increase in overall fibrosis. Western blotting showed increased activation of Akt and p38 at 12 weeks and of c-Jun amino-terminal kinase at 2 weeks, decreased activation of extracellular regulated kinase 5 at both 2 and 12 weeks, while activation of calcium/calmodulin-dependent protein kinase II and extracellular regulated kinase 1/2 was unchanged. Expression of calcineurin and ANF was also unchanged. Eccentric hypertrophy and early cardiac dysfunction in experimental AR are associated with a pattern of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy.


Subject(s)
Aortic Valve Insufficiency/complications , Hypertrophy, Left Ventricular/etiology , Myocardium/metabolism , Signal Transduction , Ventricular Dysfunction, Left/etiology , Animals , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/metabolism , Aortic Valve Insufficiency/physiopathology , Atrial Natriuretic Factor/metabolism , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chronic Disease , Disease Models, Animal , Echocardiography, Doppler, Color , Extracellular Signal-Regulated MAP Kinases/metabolism , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Myocardium/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Circ Arrhythm Electrophysiol ; 6(3): 546-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23650309

ABSTRACT

BACKGROUND: Slowed Na⁺ current (INa) decay and enhanced late INa (INa-L) prolong the action potential duration (APD) and contribute to early afterdepolarizations. Cardiac resynchronization therapy (CRT) shortens APD compared with dyssynchronous heart failure (DHF); however, the role of altered Na⁺ channel gating in CRT remains unexplored. METHODS AND RESULTS: Adult dogs underwent left-bundle branch ablation and right atrial pacing (200 beats/min) for 6 weeks (DHF) or 3 weeks followed by 3 weeks of biventricular pacing at the same rate (CRT). INa and INa-L were measured in left ventricular myocytes from nonfailing, DHF, and CRT dogs. DHF shifted voltage-dependence of INa availability by -3 mV compared with nonfailing, enhanced intermediate inactivation, and slowed recovery from inactivation. CRT reversed the DHF-induced voltage shift of availability, partially reversed enhanced intermediate inactivation but did not affect DHF-induced slowed recovery. DHF markedly increased INa-L compared with nonfailing. CRT dramatically reduced DHF-induced enhanced INa-L, abbreviated the APD, and suppressed early afterdepolarizations. CRT was associated with a global reduction in phosphorylated Ca²âº/Calmodulin protein kinase II, which has distinct effects on inactivation of cardiac Na⁺ channels. In a canine AP model, alterations of INa-L are sufficient to reproduce the effects on APD observed in DHF and CRT myocytes. CONCLUSIONS: CRT improves DHF-induced alterations of Na⁺ channel function, especially suppression of INa-L, thus, abbreviating the APD and reducing the frequency of early afterdepolarizations. Changes in the levels of phosphorylated Ca²âº/Calmodulin protein kinase II suggest a molecular pathway for regulation of INa by biventricular pacing of the failing heart.


Subject(s)
Cardiac Resynchronization Therapy/methods , Heart Failure/therapy , Sodium Channels/metabolism , Ventricular Remodeling/physiology , Animals , Computer Simulation , Disease Models, Animal , Dogs , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Heart Failure/diagnosis , Heart Failure/mortality , Ion Channel Gating/physiology , Male , Random Allocation , Reactive Oxygen Species/metabolism , Risk Assessment , Sensitivity and Specificity , Survival Rate , Treatment Outcome
18.
J Cardiovasc Transl Res ; 5(2): 180-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22311562

ABSTRACT

Cardiac resynchronization therapy reduces morbidity and mortality in patients with symptomatic systolic heart failure (New York Heart Association class III or IV) and ventricular conduction delay. The current review focuses on how high-throughput technologies including gene expression profiling and proteomics have helped in our understanding of the pathophysiology of electromechanical dyssynchrony and the molecular mechanisms by which cardiac resynchronization therapy (CRT) exerts its beneficial effects. Comparing gene expression changes in early-activated anterior vs. late-activated lateral left ventricular myocardium in a large animal model of dyssynchronous heart failure, we demonstrated a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, as changes in gene expression were primarily observed in the early-activated anterior left ventricular myocardium. This increase in regional heterogeneity of gene expression within the left ventricle was reversed by CRT. Specifically, CRT remodeled transcripts with metabolic and cell signaling function, which was corroborated by protein data. In addition, high-throughput or "omic" techniques also hold great promise to identify key pathways and biomarkers that are regulated differentially in CRT responders vs. nonresponders.


Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Metabolome/genetics , Proteome/genetics , Transcriptome/genetics , Ventricular Dysfunction, Left , Ventricular Remodeling/genetics , Gene Expression Profiling , Heart Failure/genetics , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Myocardium/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/therapy
19.
Circ Res ; 110(2): 265-74, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22179058

ABSTRACT

RATIONALE: Phosphorylation of ß(2)-adrenergic receptor (ß(2)AR) by a family of serine/threonine kinases known as G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) is a critical determinant of cardiac function. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is a well-established causal factor of heart failure, but the underlying mechanism is poorly understood. OBJECTIVE: We sought to determine the relative contribution of PKA- and GRK-mediated phosphorylation of ß(2)AR to the receptor coupling to G(i) signaling that attenuates cardiac reserve and contributes to the pathogenesis of heart failure in response to pressure overload. METHODS AND RESULTS: Overexpression of GRK2 led to a G(i)-dependent decrease of contractile response to ßAR stimulation in cultured mouse cardiomyocytes and in vivo. Importantly, cardiac-specific transgenic overexpression of a mutant ß(2)AR lacking PKA phosphorylation sites (PKA-TG) but not the wild-type ß(2)AR (WT-TG) or a mutant ß(2)AR lacking GRK sites (GRK-TG) led to exaggerated cardiac response to pressure overload, as manifested by markedly exacerbated cardiac maladaptive remodeling and failure and early mortality. Furthermore, inhibition of G(i) signaling with pertussis toxin restores cardiac function in heart failure associated with increased ß(2)AR to G(i) coupling induced by removing PKA phosphorylation of the receptor and in GRK2 transgenic mice, indicating that enhanced phosphorylation of ß(2)AR by GRK and resultant increase in G(i)-biased ß(2)AR signaling play an important role in the development of heart failure. CONCLUSIONS: Our data show that enhanced ß(2)AR phosphorylation by GRK, in addition to PKA, leads the receptor to G(i)-biased signaling, which, in turn, contributes to the pathogenesis of heart failure, marking G(i)-biased ß(2)AR signaling as a primary event linking upregulation of GRK to cardiac maladaptive remodeling, failure and cardiodepression.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Heart Failure/enzymology , Myocytes, Cardiac/enzymology , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , Adrenergic beta-Agonists/pharmacology , Animals , Cardiomegaly/enzymology , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , G-Protein-Coupled Receptor Kinase 2/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myocardial Contraction , Myocytes, Cardiac/drug effects , Pertussis Toxin/pharmacology , Phosphorylation , Receptors, Adrenergic, beta-2/genetics , Signal Transduction/drug effects , Time Factors , Transfection , Up-Regulation , Ventricular Function, Left , Ventricular Pressure , Ventricular Remodeling
20.
Sci Transl Med ; 3(100): 100ra88, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21918105

ABSTRACT

Cardiac resynchronization therapy (CRT), in which both ventricles are paced to recoordinate contraction in hearts that are dyssynchronous from conduction delay, is the only heart failure (HF) therapy to date to clinically improve acute and chronic function while also lowering mortality. CRT acutely enhances chamber mechanical efficiency but chronically alters myocyte signaling, including improving ß-adrenergic receptor reserve. We speculated that the latter would identify unique CRT effects that might themselves be effective for HF more generally. HF was induced in dogs by 6 weeks of atrial rapid pacing with (HFdys, left bundle ablated) or without (HFsyn) dyssynchrony. We used dyssynchronous followed by resynchronized tachypacing (each 3 weeks) for CRT. Both HFdys and HFsyn myocytes had similarly depressed rest and ß-adrenergic receptor sarcomere and calcium responses, particularly the ß2-adrenergic response, whereas cells subjected to CRT behaved similarly to those from healthy controls. CRT myocytes exhibited suppressed Gαi signaling linked to increased regulator of G protein (heterotrimeric guanine nucleotide-binding protein) signaling (RGS2, RGS3), yielding Gαs-biased ß2-adrenergic responses. This included increased adenosine cyclic AMP responsiveness and activation of sarcoplasmic reticulum-localized protein kinase A. Human CRT responders also showed up-regulated myocardial RGS2 and RGS3. Inhibition of Gαi (with pertussis toxin, RGS3, or RGS2 transfection), stimulation with a Gαs-biased ß2 agonist (fenoterol), or transient (2-week) exposure to dyssynchrony restored ß-adrenergic receptor responses in HFsyn to the values obtained after CRT. These results identify a key pathway that is triggered by restoring contractile synchrony and that may represent a new therapeutic approach for a broad population of HF patients.


Subject(s)
Heart Failure/metabolism , Heart Failure/therapy , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction/physiology , Animals , Cardiac Resynchronization Therapy , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Dogs , Fluorescence Resonance Energy Transfer , GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , In Vitro Techniques , Muscle Cells/metabolism , Myocardium/metabolism , RGS Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...