Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 20(3): 353-361, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33432141

ABSTRACT

Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g-1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.

2.
Mol Biol Evol ; 36(12): 2668-2681, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31290972

ABSTRACT

The recent emergence and spread of X-linked segregation distorters-called "Paris" system-in the worldwide species Drosophila simulans has elicited the selection of drive-resistant Y chromosomes. Here, we investigate the evolutionary history of 386 Y chromosomes originating from 29 population samples collected over a period of 20 years, showing a wide continuum of phenotypes when tested against the Paris distorters, from high sensitivity to complete resistance (males sire ∼95% to ∼40% female progeny). Analyzing around 13 kb of Y-linked gene sequences in a representative subset of nine Y chromosomes, we identified only three polymorphic sites resulting in three haplotypes. Remarkably, one of the haplotypes is associated with resistance. This haplotype is fixed in all samples from Sub-Saharan Africa, the region of origin of the drivers. Exceptionally, with the spread of the drivers in Egypt and Morocco, we were able to record the replacement of the sensitive lineage by the resistant haplotype in real time, within only a few years. In addition, we performed in situ hybridization, using satellite DNA probes, on a subset of 21 Y chromosomes from six locations. In contrast to the low molecular polymorphism, this revealed extensive structural variation suggestive of rapid evolution, either neutral or adaptive. Moreover, our results show that intragenomic conflicts can drive astonishingly rapid replacement of Y chromosomes and suggest that the emergence of Paris segregation distorters in East Africa occurred less than half a century ago.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Y Chromosome , Animals , Female , Haplotypes , Male , Meiosis , Phylogeography , Polymorphism, Genetic , Sex Ratio
3.
Genetica ; 141(7-9): 369-79, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24114377

ABSTRACT

Mobile elements using a "cut and paste" mechanism of transposition (Class II) are frequently prone to internal deletions and the question of the origin of these copies remains elusive. In this study, we looked for copies belonging to the Lemi Family (Tc1-mariner-IS630 SuperFamily) in the plant genomes, and copies within internal deletions were analyzed in detail. Lemi elements are found exclusively in Eudicots, and more than half of the copies have been deleted. All deletions occur between microhomologies (direct repeats from 2 to 13 bp). Copies less than 500 bp long, similar to MITEs, are frequent. These copies seem to result from large deletions occurring between microhomologies present within a region of 300 bp at both extremities of the element. These regions are particularly A/T rich, compared to the internal part of the element, which increases the probability of observing short direct repeats. Most of the molecular mechanisms responsible for double strand break repair are able to induce deletions between microhomologies during the repair process. This could be a quick way to reduce the population of active copies within a genome and, more generally, to reduce the overall activity of the element after it has entered a naive genome.


Subject(s)
DNA Transposable Elements , Genome, Plant , Magnoliopsida/genetics , Sequence Deletion , AT Rich Sequence , Magnoliopsida/classification , Recombinational DNA Repair , Repetitive Sequences, Nucleic Acid , Sequence Homology
4.
Genetica ; 120(1-3): 151-63, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15088655

ABSTRACT

Numerous laboratory investigations have compared Drosophila melanogaster and D. simulans for various life history traits and fitness related ecophysiological parameters. From presently available information, it is however difficult to get a general comparative pattern describing the divergence of their ecological niches and understanding their demographic success. Two environmental factors seem however to have played a major role: temperature and alcoholic resources. From an ecophysiological approach, D. simulans may be described as generally more sensitive to stresses; other results point to this species as more cold adapted than its sibling; in some cases, however, D. simulans may appear as better adapted to a warm environment. When investigated, ecophysiological traits show a lesser geographic variability in D. simulans than in D. melanogaster. Presently available information does not explain the ecological prevalence of D. simulans in many places with a mild temperate or subtropical climate. This is presumably due to the fact that most comparisons have been done at a single, standard temperature of 25 degrees C. Comparative studies should be undertaken, spanning the thermal ranges of the two species, and the phenotypic plasticity of ecophysiological traits should now be considered.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Drosophila/genetics , Drosophila/physiology , Acetic Acid/metabolism , Alcohols/metabolism , Animals , Carbon Dioxide , Circadian Rhythm , Climate , Ecology , Fertility , Flight, Animal , Genetic Variation , Male , Phenotype , Temperature , Time Factors
5.
Genetica ; 114(2): 195-205, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12041832

ABSTRACT

Numerous different criteria may be used for analysing species thermal adaptation. We compared male sterility thresholds in the two most investigated cosmopolitan siblings, D. melanogaster and D. simulans. A survey of various populations from Europe and North Africa evidenced consistent differences between the two species, and a detailed analysis was made on flies from Marrakech. Sharp sterility thresholds were observed in both species but at different temperatures: D. simulans appeared more tolerant to cold than its sibling (difference 1 degrees C) but more sensitive to heat (difference 1.5 degrees C). When transferred to an optimum temperature of 21 degrees C, D. simulans males, sterilized by a low temperature, recovered more rapidly than males of D. melanogaster; the reverse was true on the high temperature side. The analysis of progeny number also revealed the better tolerance of D. simulans males to cold but a lesser tolerance to heat. From these observations, we might expect that D. simulans should be more successful in cold temperate countries than its sibling, while ecological observations point to the contrary. Our data clearly show the difficulty of comparing ecophysiological data to field observations, and also the need of extensive comparative life history studies in closely related species.


Subject(s)
Drosophila/genetics , Adaptation, Physiological/genetics , Animals , Cold Temperature , Drosophila/physiology , Drosophila melanogaster , Female , Fertility/genetics , Male , Species Specificity
6.
Evolution ; 50(2): 767-776, 1996 Apr.
Article in English | MEDLINE | ID: mdl-28568957

ABSTRACT

Ethanol and acetic acid tolerances were compared in a French, highly tolerant population, and in a Congolese, very sensitive population. For both tolerances, chromosome substitutions demonstrated a major effect on chromosome 3, a lesser effect on chromosome 2, and no effect on chromosome 1, except in interactions. Directional selection experiments led to significant increases of tolerance to both toxics. Of greater interest, a strong correlated response was observed in each line: increased ethanol tolerance was accompanied by higher acetic acid tolerance and vice versa. A high genetic correlation (average value r = 0.77) was found between the two traits. These data suggest that alcohol dehydrogenase (ADH) activity does not play a major role in explaining the physiological differences known between Afrotropical and European populations. The metabolic flux permitting the detoxification of ethanol and acetic acid seems to be mainly controlled by acetyl-coA synthetase (ACS) at least in adult flies. Acetic acid adaptation could be as important as ethanol adaptation in the ecology of Drosophila melanogaster and other Drosophila species.

SELECTION OF CITATIONS
SEARCH DETAIL
...