Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Animal ; 18(10): 101315, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39276394

ABSTRACT

Assessing the genetic diversity of local breeds is essential for conserving these unique breeds, which may possess unique traits. This study provides the genomic characterisation of eight indigenous sheep breeds in Belgium based on pedigree and single nucleotide polymorphism (SNP) analysis. A total of 687 sheep were genotyped and were subjected to a rigorous quality control, resulting in a set of 45 978 autosomal SNPs. Pedigree analysis showed breed-average inbreeding estimates between 3.3% and 11.3%. The genomic analysis included an assessment of runs of homozygosity (ROH) to examine the genomic inbreeding coefficient, with breed-average inbreeding coefficients estimated between 4.1% and 8.5%. Runs of homozygosity islands were identified in six of the eight breeds studied, with some exhibiting an incidence of up to 58%. Interestingly, several ROH islands overlapped with other breeds included in this study, as well as with international sheep breeds. Pedigree-based effective population sizes were estimated below 100 for all breeds, whereas genomic-based effective population sizes were below 24, indicating that these eight local sheep breeds are endangered. Principal component analysis, admixture analyses, and Fst computations were used to study the population structure and genetic differences. A neighbour-joining tree using 95 international sheep breeds positioned the eight local breeds in the group of milksheep, Texel sheep and the Scandinavian breeds. Additionally, the investigation of paternal oY1 genotypes revealed diverse lineage origins within the Belgian sheep population. This study refines and deepens our knowledge about the local sheep breeds in Belgium, thereby improving their management and conservation. Moreover, as these breeds are linked to other international breeds, these insights are significant for the global scientific community.

2.
BMC Genomics ; 24(1): 769, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093185

ABSTRACT

BACKGROUND: Transcriptomic studies often require collection of fresh tissues post euthanasia. The chosen euthanasia method might have the potential to induce variations in gene expressions that are unlinked with the experimental design. The present study compared the suitability of 'nitrogen gas in foam' (ANOXIA) in comparison to a non-barbiturate anaesthetic, T-61® (T61), for euthanizing piglets used in transcriptome research. Further, the effect of common tissue storage conditions, RNAlater™ (RL) and snap freezing in liquid nitrogen (LN2), on gene expression profiles were also analysed. RESULTS: On comparison of the 3'mRNA-Seq data generated from pituitary, hypothalamus, liver and lung tissues, no significant differential expression in the protein coding genes were detected between the euthanasia methods. This implies that the nitrogen anoxia method could be a suitable alternative for euthanasia of piglets used in transcriptomic research. However, small nuclear RNAs (snRNAs) that constitute the eukaryotic spliceosomal machinery were found to be significantly higher (log2fold change ≥ 2.0, and adjusted p value ≤ 0.1) in pituitary samples collected using ANOXIA. Non-protein coding genes like snRNAs that play an important role in pre-mRNA splicing can subsequently modify gene expression. Storage in RL was found to be superior in preserving RNA compared to LN2 storage, as evidenced by the significantly higher RIN values in representative samples. However, storage in RL as opposed to LN2, also influenced differential gene expression in multiple tissues, perhaps as a result of its inability to inhibit biological activity during storage. Hence such external sources of variations should be carefully considered before arriving at research conclusions. CONCLUSIONS: Source of biological variations like euthanasia method and storage condition can confound research findings. Even if we are unable to prevent the effect of these external factors, it will be useful to identify the impact of these variables on the parameter under observation and thereby prevent misinterpretation of our results.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Swine , Gene Expression Profiling/methods , RNA , RNA, Small Nuclear , Nitrogen , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL