Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biotechnol Prog ; 40(3): e3441, 2024.
Article in English | MEDLINE | ID: mdl-38462762

ABSTRACT

Single cell cloning is a critical step for cell line development (CLD) for therapeutic protein production, with proof of monoclonality being compulsorily sought in regulatory filings. Among the different single cell deposition technologies, we found that fluorescence activated cell sorting (FACS) offers high probability of monoclonality and can allow selective enrichment of the producer cells. However, FACS instruments are expensive and resource-intensive, have a large footprint, require highly skilled operators and take hours for setup, thereby complicating the cell line generation process. With the aim of finding an easy-to-use alternative to FACS, we identified a flow cytometry-based microfluidic cell dispenser, which presents a single cell sorting solution for biopharmaceutical CLD. The microfluidic cell dispenser is small, budget-friendly, easy-to-use, requires lower-cost consumables, permits flow cytometry-enabled multiparametric target cell enrichment and offers fast and gentle single cell dispensing into multiwell plates. Following comprehensive evaluation, we found that single cell deposition by the microfluidic cell dispenser resulted in >99% probability of monoclonality for production cell lines. Moreover, the clonally derived producer cell lines generated from the microfluidic cell dispenser demonstrated comparable or improved growth profiles and production capability compared to the FACS derived cell lines. Taken together, microfluidic cell dispensing can serve as a cost-effective, efficient and convenient alternative to FACS, simplifying the biopharmaceutical CLD platform with significant reductions in both scientist time and running costs.


Subject(s)
Cricetulus , Flow Cytometry , CHO Cells , Animals , Microfluidics/methods , Microfluidic Analytical Techniques/methods
2.
Sci Rep ; 13(1): 19210, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932360

ABSTRACT

The Herpes simplex virus (HSV)-based platform for production of recombinant adeno-associated viral vectors (rAAVs) yields higher titers and increased percentage of full capsids when compared to the triple transient transfection (TTT) method. However, this platform currently faces two major challenges. The first challenge is the reliance on commercial media, sometimes supplemented with serum, leading to costly manufacturing and a high risk for introduction of adventitious agents. The second challenge is that the production of HSV-1 relies on adherent complementing Vero cells (V27), making it difficult to scale up. We engineered serum-free-adapted CHO cells expressing key HSV-1 entry receptors, HVEM and/or Nectin-1 to address the first challenge. Using high-throughput cloning methods, we successfully selected a HVEM receptor-expressing clone (CHO-HV-C1) that yields 1.62 × 109, 2.51 × 109, and 4.07 × 109 viral genome copies/mL with rAAV6.2-GFP, rAAV8-GFP, and rAAV9-GFP vectors respectively, within 24 h post rHSV-1 co-infection. Moreover, CHO-HV-C1-derived rAAVs had comparable in vitro transduction, infectivity, and biodistribution titers to those produced by TTT. The second challenge was addressed via engineering CHO-HV-C1 cells to express HSV-1 CP27. These cells successfully produced rHSV-1 vectors, but with significantly lower titers than V27 cells. Taken together, the CHO/HSV system provides a novel, scalable, reduced cost, serum-free AAV manufacturing platform.


Subject(s)
Herpesvirus 1, Human , Cricetinae , Animals , Chlorocebus aethiops , CHO Cells , Cricetulus , Vero Cells , Tissue Distribution , Herpesvirus 1, Human/genetics , Genetic Therapy
3.
Biotechnol Bioeng ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36722717

ABSTRACT

The global COVID-19 pandemic ignited an unprecedented race to develop vaccines and antibody therapeutics. AstraZeneca's pursuit to provide AZD7442 (EVUSHELD), two long-acting, SARS-CoV-2 spike receptor binding domain-specific neutralizing monoclonal antibodies, to individuals at risk on highly accelerated timelines challenged our traditional ways of process development and spurred the rapid adoption of novel approaches. Conventional upstream development processes were replaced by agile strategies that combined technological advances and highly accelerated workflows. With calculated business risks and close cross-functional collaborations, this process paved the way for hyper accelerated antibody development from discovery through manufacturing, process validation, emergency use authorization filing, and global regulatory approvals. The result was initiation of commercial manufacturing at a contract manufacturing organization less than 6 months from the selection of cilgavimab and tixagevimab-a process that historically has taken close to 10 years.

4.
MAbs ; 14(1): 2020081, 2022.
Article in English | MEDLINE | ID: mdl-35030984

ABSTRACT

With the aim of increasing protein productivity of Chinese hamster ovary (CHO) cells, we sought to generate new CHO hosts with favorable biomanufacturing phenotypes and improved functionality. Here, we present an innovative approach of enriching the CHO host cells with a high mitochondrial membrane potential (MMP). Stable transfectant pools and clonal cell lines expressing difficult-to-express bispecific molecules generated from the MMP-enriched host outperformed the parental host by displaying (1) improved fed-batch productivity; (2) enhanced long-term cell viability of pools; (3) more favorable lactate metabolism; and (4) improved cell cloning efficiency during monoclonal cell line generation. Proteomic analysis together with Western blot validation were used to investigate the underlying mechanisms by which high MMP influenced production performance. The MMP-enriched host exhibited multifaceted protection against mitochondrial dysfunction and endoplasmic reticulum stress. Our findings indicate that the MMP-enriched host achieved an overall "fitter" phenotype that contributes to the significant improvement in biomanufacturing capability.


Subject(s)
Membrane Potential, Mitochondrial/genetics , Metabolic Engineering , Mitochondria/genetics , Mitochondria/metabolism , Animals , CHO Cells , Cricetulus
6.
J Immunol Methods ; 464: 31-39, 2019 01.
Article in English | MEDLINE | ID: mdl-30342010

ABSTRACT

Development of cell lines for biotherapeutic protein production requires screening large numbers of clones to identify and isolate high producing ones. As such, stable cell line generation is a time- and resource-intensive process. There is an increasing need to enhance the selection efficiency of high-yielding clonal cell lines for cell line development projects by using high throughput screening of live cells for markers predictive of productivity. Single cell deposition by fluorescence activated cell sorting (FACS) is a commonly performed method for cloning to generate cell lines derived from a single recombinant cell. We have developed a novel strategy to identify higher productivity cells at the FACS step by leveraging a simple viable cell staining method that detects mitochondrial membrane potential (Ψm), a key indicator of cellular metabolic activity. We chose a dual-emission dye (Mito-ID, Enzo Life Sciences) that fluoresces green and orange in living cells with the intensity of the orange fluorescence being dependent on the cells Ψm status. Using available clonal cell lines with known productivity, or stable transfectant pools, we evaluated Ψm of cell populations with Mito-ID dye. We determined that the intensity of the Ψm fluorescent signal correlates with the known fed-batch titers of the producer clones, and that cell sorting based on an optimal Ψm staining intensity selectively enriches for higher producing clones from nonclonal transfectant pools. These clones are phenotypically stable for recombinant protein production. Furthermore, the strategy has been successfully applied to identifying higher producing cell lines for a range of antibody molecular formats. Using this method, we can combine an enriching step with the cloning step for high producers, thereby saving time and resources in cell line development.


Subject(s)
Antibodies/metabolism , Cell Separation/methods , Energy Metabolism , Flow Cytometry , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Animals , Antibodies/genetics , Antibody Formation , CHO Cells , Clone Cells , Cloning, Molecular , Cricetulus , Fluorescent Dyes , Phenotype , Recombinant Proteins/biosynthesis
7.
Biotechnol Bioeng ; 116(4): 793-804, 2019 04.
Article in English | MEDLINE | ID: mdl-30536645

ABSTRACT

Cell line development (CLD) for biotherapeutics is a time- and resource-intensive process requiring the isolation and screening of large numbers of clones to identify high producers. Novel methods aimed at enhancing cell line screening efficiency using markers predictive of productivity early in the CLD process are needed to reliably generate high-yielding cell lines. To enable efficient and selective isolation of antibody expressing Chinese hamster ovary cells by fluorescence-activated cell sorting, we developed a strategy for the expression of antibodies containing a switchable membrane-associated domain to anchor an antibody to the membrane of the expressing cell. The switchable nature of the membrane domain is governed by the function of an orthogonal aminoacyl transfer RNA synthetase/tRNApyl pair, which directs a nonnatural amino acid (nnAA) to an amber codon encoded between the antibody and the membrane anchor. The process is "switchable" in response to nnAA in the medium, enabling a rapid transition between the surface display and secretion. We demonstrate that the level of cell surface display correlates with productivity and provides a method for enriching phenotypically stable high-producer cells. The strategy provides a means for selecting high-producing cells with potential applications to multiple biotherapeutic protein formats.


Subject(s)
Codon, Terminator , Genetic Vectors/genetics , Immunoglobulin G/genetics , Recombinant Proteins/genetics , Animals , Batch Cell Culture Techniques/methods , CHO Cells , Cricetulus , Humans , Transfection/methods
8.
PLoS One ; 10(6): e0129237, 2015.
Article in English | MEDLINE | ID: mdl-26079374

ABSTRACT

Tumor vaccines have held much promise, but to date have demonstrated little clinical success. This lack of success is conceivably due to poor tumor antigen presentation combined with immuno-suppressive mechanisms exploited by the tumor itself. Knock down of Inhibitor of differentiation protein 2 (Id2-kd) in mouse neuroblastoma whole tumor cells rendered these cells immunogenic. Id2-kd neuroblastoma (Neuro2a) cells (Id2-kd N2a) failed to grow in most immune competent mice and these mice subsequently developed immunity against further wild-type Neuro2a tumor cell challenge. Id2-kd N2a cells grew aggressively in immune-compromised hosts, thereby establishing the immunogenicity of these cells. Therapeutic vaccination with Id2-kd N2a cells alone suppressed tumor growth even in established neuroblastoma tumors and when used in combination with immune checkpoint blockade eradicated large established tumors. Mechanistically, immune cell depletion studies demonstrated that while CD8+ T cells are critical for antitumor immunity, CD4+ T cells are also required to induce a sustained long-lasting helper effect. An increase in number of CD8+ T-cells and enhanced production of interferon gamma (IFNγ) was observed in tumor antigen stimulated splenocytes of vaccinated mice. More importantly, a massive influx of cytotoxic CD8+ T-cells infiltrated the shrinking tumor following combined immunotherapy. These findings show that down regulation of Id2 induced tumor cell immunity and in combination with checkpoint blockade produced a novel, potent, T-cell mediated tumor vaccine strategy.


Subject(s)
Cancer Vaccines/immunology , Inhibitor of Differentiation Protein 2/immunology , Lymphocyte Depletion/methods , Neuroblastoma/immunology , RNA Interference/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/administration & dosage , Cell Line, Tumor , Disease Models, Animal , Disease-Free Survival , Female , Humans , Immunity/immunology , Immunotherapy/methods , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred Strains , Mice, Nude , Mice, SCID , Neuroblastoma/pathology , Neuroblastoma/therapy , RNAi Therapeutics/methods
9.
Cancer Res ; 74(19): 5449-57, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25115301

ABSTRACT

Although it is now widely appreciated that antitumor immunity is critical to impede tumor growth and progression, there remain significant gaps in knowledge about the mechanisms used by tumors to escape immune control. In tumor cells, we hypothesized that one mechanism of immune escape used by tumors involves the synthesis and extracellular shedding of gangliosides, a class of biologically active cell surface glycosphingolipids with known immunosuppressive properties. In this study, we report that tumor cells engineered to be ganglioside deficient exhibit impaired tumorigenicity, supporting a link between ganglioside-dependent immune escape and tumor outgrowth. Notably, we documented a dramatic reduction in the numbers and function of tumor-infiltrating myeloid-derived suppressor cells (MDSC) in ganglioside-deficient tumors, in contrast with the large MDSC infiltrates seen in ganglioside-rich littermate control tumors. Transient ganglioside reconstitution of the tumor cell inoculum was sufficient to increase MDSC infiltration, supporting a direct connection between ganglioside production by tumor cells and the recruitment of immunosuppressive MDSC into the tumor microenvironment. Our results reveal a novel mechanism of immune escape that supports tumor growth, with broad implications given that many human tumors produce and shed high levels of gangliosides.


Subject(s)
Gangliosides/physiology , Neoplasms, Experimental/pathology , Animals , Cell Line, Transformed , Flow Cytometry , Mice , Mice, Inbred C57BL
10.
PLoS One ; 8(12): e83521, 2013.
Article in English | MEDLINE | ID: mdl-24376712

ABSTRACT

The ability of high-risk neuroblastoma to survive unfavorable growth conditions and multimodal therapy has produced an elusive childhood cancer with remarkably poor prognosis. A novel phenomenon enabling neuroblastoma to survive selection pressure is its capacity for reversible adaptive plasticity. This plasticity allows cells to transition between highly proliferative anchorage dependent (AD) and slow growing, anoikis-resistant anchorage independent (AI) phenotypes. Both phenotypes are present in established mouse and human tumors. The differential gene expression profile of the two cellular phenotypes in the mouse Neuro2a cell line delineated pathways of proliferation in AD cells or tyrosine kinase activation/ apoptosis inhibition in AI cells. A 20 fold overexpression of inhibitor of differentiation 2 (Id2) was identified in AD cells while up-regulation of genes involved in anoikis resistance like PI3K/Akt, Erk, Bcl2 and integrins was observed in AI cells. Similarly, differential expression of Id2 and other genes of interest were also observed in the AD and AI phenotypes of human neuroblastoma cell lines, SK-N-SH and IMR-32; as well as in primary human tumor specimens. Forced down-regulation of Id2 in AD cells or overexpression in AI cells induced the cells to gain characteristics of the other phenotype. Id2 binds both TGFß and Smad2/3 and appears critical for maintaining the proliferative phenotype at least partially through negative regulation of the TGFß/Smad pathway. Simultaneously targeting the differential molecular pathways governing reversible adaptive plasticity resulted in 50% cure of microscopic disease and delayed tumor growth in established mouse neuroblastoma tumors. We present a mechanism that accounts for reversible adaptive plasticity and a molecular basis for combined targeted therapies in neuroblastoma.


Subject(s)
Inhibitor of Differentiation Protein 2/metabolism , Neuroblastoma/pathology , Transforming Growth Factor beta/metabolism , Animals , Anoikis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Humans , Mice , Molecular Targeted Therapy , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Phenotype
11.
Front Oncol ; 2: 82, 2012.
Article in English | MEDLINE | ID: mdl-22891161

ABSTRACT

We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity, and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, ß-catenin, and PDGFRß enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic, and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

12.
Exp Neurol ; 233(2): 749-57, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22178330

ABSTRACT

GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABA(B)/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABA(B) and GABA(A) mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABA(B)/GABA(A) ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABA(B)/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABA(B) and GABA(A) inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice.


Subject(s)
CA1 Region, Hippocampal/physiology , Disease Models, Animal , Down Syndrome/physiopathology , Inhibitory Postsynaptic Potentials/physiology , Neural Inhibition/genetics , Animals , Down Syndrome/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/biosynthesis , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Receptors, GABA-A/physiology , Receptors, GABA-B/physiology , Signal Transduction/genetics
13.
Dev Neurosci ; 33(5): 428-41, 2011.
Article in English | MEDLINE | ID: mdl-21865665

ABSTRACT

Down syndrome (DS), the most frequent genetic cause of intellectual disability and developmental delay, results from impaired neural stem cell proliferation and differentiation. Impaired neurogenesis in the neocortex, hippocampus and cerebellum is believed to be the underlying cause of learning and behavioral deficits in the Ts65Dn mouse model of DS. Aggressive sensorimotor and cognitive therapies have shown promise in mitigating the cognitive disabilities in DS but these behavioral therapies have not yet been investigated at the cellular level. Here, using the Ts65Dn mouse model of DS, we demonstrate that a combination of environmental enrichment and physical exercise starting in juvenile mice (postnatal day 18) markedly increases cell proliferation, neurogenesis and gliogenesis in the hippocampal dentate gyrus (DG) and the forebrain subventricular zone (SVZ) of both male and female mice. Enrichment and exercise increased the rate of Ts65Dn DG neurogenesis to be comparable to that of the nonenriched euploid group, while the effect on SVZ neurogenesis was reduced and seen only after prolonged exposure. These results clearly indicate that in a comprehensive stimulatory environment, the postnatal DS brain has the intrinsic capability of improving neurogenesis and gliogenesis to the levels of normal matched controls and that this cellular response underlies the cognitive improvement seen following behavioral therapies.


Subject(s)
Down Syndrome/physiopathology , Environment , Neurogenesis/physiology , Animals , Body Weight , Cell Proliferation , Disease Models, Animal , Down Syndrome/pathology , Female , Hippocampus/cytology , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Motor Activity
14.
Nat Neurosci ; 13(8): 927-34, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20639873

ABSTRACT

Over-inhibition is thought to be one of the underlying causes of the cognitive deficits in Ts65Dn mice, the most widely used model of Down syndrome. We found a direct link between gene triplication and defects in neuron production during embryonic development. These neurogenesis defects led to an imbalance between excitatory and inhibitory neurons and to increased inhibitory drive in the Ts65Dn forebrain. We discovered that Olig1 and Olig2, two genes that are triplicated in Down syndrome and in Ts65Dn mice, were overexpressed in the Ts65Dn forebrain. To test the hypothesis that Olig triplication causes the neurological phenotype, we used a genetic approach to normalize the dosage of these two genes and thereby rescued the inhibitory neuron phenotype in the Ts65Dn brain. These data identify seminal alterations during brain development and suggest a mechanistic relationship between triplicated genes and these brain abnormalities in the Ts65Dn mouse.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Brain Diseases/genetics , Brain/abnormalities , Down Syndrome/genetics , Nerve Tissue Proteins/genetics , Animals , Blotting, Western , Brain/cytology , Brain/embryology , Brain Diseases/physiopathology , Disease Models, Animal , Embryonic Development/genetics , Immunohistochemistry , In Situ Hybridization , Inhibitory Postsynaptic Potentials/physiology , Mice , Microscopy, Confocal , Neurons/cytology , Oligodendrocyte Transcription Factor 2 , Patch-Clamp Techniques , Reverse Transcriptase Polymerase Chain Reaction
15.
J Neurosci ; 27(43): 11483-95, 2007 Oct 24.
Article in English | MEDLINE | ID: mdl-17959791

ABSTRACT

Trisomy 21, one of the most prevalent congenital birth defects, results in a constellation of phenotypes collectively termed Down syndrome (DS). Mental retardation and motor and sensory deficits are among the many debilitating symptoms of DS. Alterations in brain growth and synaptic development are thought to underlie the cognitive impairments in DS, but the role of early brain development has not been studied because of the lack of embryonic human tissue and because of breeding difficulties in mouse models of DS. We generated a breeding colony of the Ts65Dn mouse model of DS to test the hypothesis that early defects in embryonic brain development are a component of brain dysfunction in DS. We found substantial delays in prenatal growth of the Ts65Dn cerebral cortex and hippocampus because of longer cell cycle duration and reduced neurogenesis from the ventricular zone neural precursor population. In addition, the Ts65Dn neocortex remains hypocellular after birth and there is a lasting decrease in synaptic development beginning in the first postnatal week. These results demonstrate that specific abnormalities in embryonic forebrain precursor cells precede early deficits in synaptogenesis and may underlie the postnatal disabilities in Ts65Dn and DS. The early prenatal period is therefore an important new window for possible therapeutic amelioration of the cognitive symptoms in DS.


Subject(s)
Disease Models, Animal , Down Syndrome/embryology , Embryonic Development , Neurons , Prosencephalon/embryology , Synapses , Animals , Down Syndrome/pathology , Embryonic Development/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/pathology , Prosencephalon/pathology , Synapses/pathology
16.
Dev Dyn ; 236(12): 3393-401, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17626285

ABSTRACT

Fluorescent semiconductor nanocrystal quantum dots (QDs) are a class of multifunctional inorganic fluorophores that hold great promise for clinical applications and biomedical research. Because no methods currently exist for directed QD-labeling of mammalian cells in the nervous system in vivo, we developed novel in utero electroporation and ultrasound-guided in vivo delivery techniques to efficiently and directly label neural stem and progenitor cells (NSPCs) of the developing mammalian central nervous system with QDs. Our initial safety and proof of concept studies of one and two-cell QD-labeled mouse embryos reveal that QDs are compatible with early mammalian embryonic development. Our in vivo experiments further show that in utero labeled NSPCs continue to develop in an apparent normal manner. These studies reveal that QDs can be effectively used to label mammalian NSPCs in vivo and will be useful for studies of in vivo fate mapping, cellular migration, and NSPC differentiation during mammalian development.


Subject(s)
Embryonic Stem Cells/cytology , Quantum Dots , Animals , Cell Differentiation , Cells, Cultured , Electroporation , Embryonic Development , Female , Fluorescent Dyes , Mice , Neurons/cytology , Pregnancy , Safety
17.
Cell Mol Neurobiol ; 26(4-6): 719-34, 2006.
Article in English | MEDLINE | ID: mdl-16783527

ABSTRACT

1. Down syndrome (DS) arises from the presence of three copies of chromosome (Chr.) 21. Fine motor learning deficits found in DS from childhood to adulthood result from expression of extra genes on Chr. 21, however, it remains unclear which if any of these genes are the specific causes of the cognitive and motor dysfunction. DS cerebellum displays morphological abnormalities that likely contribute to the DS motor phenotype. 2. The G-protein-activated inwardly rectifying potassium channel subunit 2 (GIRK2) is expressed in cerebellum and can shunt dendritic conductance and attenuate postsynaptic potentials. We have used an interbreeding approach to cross a genetic mouse model of DS (Ts65Dn) with Girk2 knockout mice and examined its relative expression level by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. 3. We report here for the first time that GIRK2 is expressed in unipolar brush cells, which are excitatory interneurons of the vestibulocerebellum and dorsal cochlear nucleus. Analysis of disomic-Ts65Dn/Girk2((+/+/-)) and heterozygous-Diploid/Girk2((+/-)) mice shows that GIRK2 expression in Ts65Dn lobule X follows gene dosage. The lobule X of Ts65Dn mice contain greater numbers of unipolar brush cells co-expressing GIRK2 and calretinin than the control mouse groups. 4. These results demonstrate that gene triplication can impact specific cell types in the cerebellum. We hypothesize that GIRK2 overexpression will adversely affect cerebellar circuitry in Ts65Dn vestibulocerebellum and dorsal cochlear nucleus due to GIRK2 shunting properties and its effects on resting membrane potential.


Subject(s)
Cerebellum/metabolism , Down Syndrome/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Animals , Calbindin 2 , Cell Polarity , Cerebellum/cytology , Disease Models, Animal , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Gene Dosage , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Microvilli/metabolism , S100 Calcium Binding Protein G/metabolism
18.
J Neurotrauma ; 22(1): 172-88, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15665611

ABSTRACT

Larval lampreys are known to successfully recover normal behavior following spinal cord injury. More recently, we showed temperature can influence functional recovery, with colder temperatures more likely producing behavioral abnormality despite the cold being the animals' normal temperature. Here we analyze the differences associated with temperature effects. We examine serotonergic expression along the spinal cord following midbody lesions considering time from injury, temperature during recovery and fiber location. We also examine the relationship between regeneration and locomotion, insofar as the pattern of muscle potentials during unrestrained swimming is normal or abnormal. At 26 weeks after spinal cord injury in all groups of animals, immunohistochemistry and HPLC for serotonin and serotonin expression above and below the lesion can be significantly changed in all regional sources of serotonin independent of the temperature animals recover from their injuries. Animals from warmer tanks recover serotonin expression in the segment immediately caudal to the lesion site with little further away from the lesion; animals from the cold room aquaria have significantly less recovery of expression caudal to the lesion and none further away. There was no apparent relationship between the distribution of serotonin and recovery. The changes suggest that some intraspinal reorganization has occurred. We propose a relationship between the observed results and functional recovery, but it remains conjectural. The fact that some animals recover normal function suggests plasticity must occur in animals successful in recovering normal function. Thus, the lamprey can be used as a model system to study the adaptive changes that permit or prevent functional recovery.


Subject(s)
Cold Temperature , Hot Temperature , Serotonin/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , Chromatography, High Pressure Liquid , Lampreys , Larva , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Recovery of Function/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...