Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 384, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615101

ABSTRACT

Lack of sufficient observations has been an impediment for understanding the spatial and temporal variability of sea-surface pCO2 for the Bay of Bengal (BoB). The limited number of observations into existing machine learning (ML) products from BoB often results in high prediction errors. This study develops climatological sea-surface pCO2 maps using a significant number of open and coastal ocean observations of pCO2 and associated variables regulating pCO2 variability in BoB. We employ four advanced ML algorithms to predict pCO2. We use the best ML model to produce a high-resolution climatological product (INCOIS-ReML). The comparison of INCOIS-ReML pCO2 with RAMA buoy-based sea-surface pCO2 observations indicates INCOIS-ReML's satisfactory performance. Further, the comparison of INCOIS-ReML pCO2 with existing ML products establishes the superiority of INCOIS-ReML. The high-resolution INCOIS-ReML greatly captures the spatial variability of pCO2 and associated air-sea CO2 flux compared to other ML products in the coastal BoB and the northern BoB.

2.
Heliyon ; 9(7): e17940, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483689

ABSTRACT

Global oceanic regions are rapidly changing in terms of their temperature, oxygen, heat content, salinity and biogeochemistry. Since the biogeochemistry of the oceans is important and pivotal for global food production, and a major part of the world population relies on marine resources for their daily life and livelihood, it is imperative to monitor and find the spatio-temporal changes in the primary productivity of oceans. Here, we estimate the changes in Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP) in the north Indian Ocean (NIO) basins of Bay of Bengal and Arabian Sea for the period 1998-2019. We find a substantial reduction of NPP in NIO since 1998 (-0.048 mg m-3 day-1 yr-1) and the increase in sea surface temperature (SST) (+0.02 °C yr-1) is the primary driver of this change. Furthermore, there is a significant (10-20%) change in the air mass or dust transport to NIO from the period Decade 1 (1998-2008) to Decade 2 (2009-2019). This change in air mass trajectories has also altered NPP in both basins through the changes in nutrient input and associated biogeochemistry. Henceforth, this study cautions the changes in primary productivity of NIO, and suggests regular assessments and continuous monitoring of the physical and biological processes from a perspective of food security and ecosystem dynamics.

3.
Sci Rep ; 13(1): 4314, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922652

ABSTRACT

Anthropogenic emissions have produced significant amount of carbon dioxide (CO2) in the atmosphere since the beginning of the industrial revolution. High levels of atmospheric CO2 increases global temperature as CO2 absorbs outgoing longwave radiation and re-emits. Though a well-mixed greenhouse gas, CO2 concentration is not uniform in the atmosphere across different altitudes and latitudes. Here, we uncover a region of high CO2 concentration (i.e. CO2 pool) in the middle troposphere (500-300 hPa) over the Indo-Pacific Warm Pool (IPWP, 40° E-140° W, 25° S-25° N), in which the CO2 concentration is higher than that of other regions in the same latitude band (20° N-20° S), by using CO2 satellite measurements for the period 2002-2017. This CO2 pool extends from the western Pacific to the eastern Indian Ocean. Much of the CO2 pool is over the western Pacific Ocean (74.87%), and the remaining lies over the eastern Indian Ocean (25.13%). The rising branch of Walker circulation acts as a "CO2 Chimney" that constantly transports CO2 released from the natural, human-induced and ocean outgassing processes to the middle and upper troposphere. The CO2 pool evolves throughout the year with an average annual trend of about 2.17 ppm yr-1, as estimated for the period 2003-2016. Our analysis further reveals that La Niña (El Niño) events strengthen (weaken) the CO2 pool in the mid-troposphere. The radiative forcing for the CO2 pool suggests more warming in the region and is a grave concern for global warming and climate change.

4.
Micromachines (Basel) ; 14(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36838147

ABSTRACT

The present research work represents the numerical study of the device performance of a lead-free Cs2TiI6-XBrX-based mixed halide perovskite solar cell (PSC), where x = 1 to 5. The open circuit voltage (VOC) and short circuit current (JSC) in a generic TCO/electron transport layer (ETL)/absorbing layer/hole transfer layer (HTL) structure are the key parameters for analyzing the device performance. The entire simulation was conducted by a SCAPS-1D (solar cell capacitance simulator- one dimensional) simulator. An alternative FTO/CdS/Cs2TiI6-XBrX/CuSCN/Ag solar cell architecture has been used and resulted in an optimized absorbing layer thickness at 0.5 µm thickness for the Cs2TiBr6, Cs2TiI1Br5, Cs2TiI2Br4, Cs2TiI3Br3 and Cs2TiI4Br2 absorbing materials and at 1.0 µm and 0.4 µm thickness for the Cs2TiI5Br1 and Cs2TiI6 absorbing materials. The device temperature was optimized at 40 °C for the Cs2TiBr6, Cs2TiI1Br5 and Cs2TiI2Br4 absorbing layers and at 20 °C for the Cs2TiI3Br3, Cs2TiI4Br2, Cs2TiI5Br1 and Cs2TiI6 absorbing layers. The defect density was optimized at 1010 (cm-3) for all the active layers.

5.
Mar Pollut Bull ; 182: 114029, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35973246

ABSTRACT

Fifty four sediment samples representing pre and post-monsoon seasons were collected along a transect from off Kochi, lying between the latitudes 9°57'59.5″-9°54'30.4″ and longitudes 76°11'7.04″-75°38'50.3″ of the South eastern Arabian Sea. The present study investigates the levels of trace metals (Zn, Cd, Pb, Cu, Fe, Ni, Mn, Co and Cr), total organic carbon (TOC), total inorganic carbon (TIC), elemental composition and grain size to assess the extent of environmental pollution and to discuss the distribution of these trace metals in the surficial sediments. Sediment pollution assessment was done using the Contamination factor (C.F), Geoaccumulation Index (Igeo), Enrichment Factor (EF), and Pollution Load Index (PLI). The majority of trace metals analysed in this study exhibited the highest concentrations at stations 1, 2 and 3 where the land-based anthropogenic input was found to be maximum.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Carbon/analysis , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Risk Assessment , Seasons , Trace Elements/analysis , Water Pollutants, Chemical/analysis
6.
J Fish Biol ; 100(4): 988-996, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35066896

ABSTRACT

Tide and lunar phases often influence the behaviour and life cycle of different fishes, especially migratory species. In the Hooghly River estuary, Hilsa shad is an anadromous fish species that migrates from the adjacent sea to the estuary and rivers for spawning. After spawning, the juveniles remain in the rivers and estuary for few months then start their downstream migration towards the adjacent sea. However, the pattern of their downstream migration has not been studied in detail so far. This study investigates the role of tide and lunar phases on the juvenile Hilsa shad migration pattern. In this study, we have estimated the rate of juveniles migrating through the river channel (no. m-2  h-1 ) during high tide and low tide in all of the lunar phases. The number of juvenile Hilsa shad fishes is found to be much higher during low tides in most of the observations and there is a significant difference (t = 11.904, P < 0.001) between the high tide and low tide catches in the entire study region. Among the eight lunar phases, the number of juveniles is also observed to be higher during the new moon and full moon, and there is also a significant difference in juvenile catch among the lunar phases (F = 64.372, P < 0.001) in the entire stretch of the study area. These observations enabled us to develop a plausible mechanism of the downstream migration of Hilsa shad juveniles.


Subject(s)
Estuaries , Moon , Animals , Fishes , Rivers , Seafood
7.
Environ Sci Pollut Res Int ; 28(45): 64892-64907, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34319522

ABSTRACT

The Gulf of Mannar (GoM), located between India and Sri Lanka, has astonishing faunal richness and diversity. Two oceanographic data sets supplemented with satellite remote sensing observations are discussed here to show the unique ecological setting in the GoM sustaining a rich and diverse fauna. We tested the hypothesis that a specific stretch of a large marine environment behaves differently from the rest of the region due to its peculiar geographical position. Primarily, unlike the adjacent Indian southwestern shelf in the Southeastern Arabian Sea, oxygen deficiency associated with coastal upwelling imparting physiological stress to marine fauna does not occur in the GoM. Secondly, the GoM along the Indian coastline receives an adequate amount of primary (plankton) food from the Arabian Sea and the Bay of Bengal through the advected water associated with the seasonally reversing surface currents. Thirdly, the GoM water has high transparency, aerated sandy seafloor conducive for the growth of diverse corals and much sensitive fauna. All these indicate that an astonishingly rich and diverse aquatic fauna in the GoM is a biological manifestation of a conducive geographical setting and propose that similar other environments worldwide, protected from oxygen deficiency, might also be functioning as a refuge for marine life.


Subject(s)
Anthozoa , Animals , India , Plankton , Sri Lanka
8.
Environ Monit Assess ; 193(7): 415, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34117931

ABSTRACT

The seasonal variability of the lateral flux of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) of the tropical Hooghly estuary is analyzed in this work. In situ observations of water temperature, salinity, dissolved oxygen, TAlk, and pH were measured in four different stations of the Hooghly estuary. It was measured once every month during 2015-2016, and subsequently, DIC was estimated. A carbon budget was constructed to quantify carbon flows through the freshwater-marine continuum of the Hooghly estuary, and plausible impacts on the adjacent coastal ocean, the northern Bay of Bengal, were examined. The biogeochemical mass balance box model was used to compute the seasonal flow of carbon flux, and subsequently, the annual budgeting of lateral fluxes of TAlk and DIC to the adjacent coastal ocean was carried out. The net annual TAlk and DIC flux from the Hooghly estuary to the adjacent coastal ocean were 4.45 ± 1.90 × 1011 mol and 4.59 ± 1.70 × 1011 mol, respectively. The net annual DIC flux of the Hooghly estuary is about 30 to 60 times higher than surface area integrated air-water CO2 flux, which is an indication of promoting acidification in the adjacent coastal ocean. The present study indicates that the lateral DIC flux has increased substantially in the Hooghly estuary during the last two decades. The increase in inorganic carbon load in the Hooghly estuary due to the enhanced discharge of inorganic and organic matter load in the upper reaches of the estuary led to this increase in lateral DIC flux. The results strongly establish the need of having such regional studies for better understanding the estuarine carbon dynamics, and its role in controlling the adjacent coastal ocean dynamics.


Subject(s)
Carbon , Rivers , Bays , Carbon/analysis , Environmental Monitoring , Estuaries
9.
Sci Total Environ ; 752: 142190, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33207513

ABSTRACT

Mangrove, seagrass, and coral habitats often lie adjacent to each other in the tropics and subtropics. Lateral carbon fluxes and their consecutive effects on CO2 dynamics and air-water fluxes along the ecosystem continuum are often overlooked. We measured the partial pressure of CO2 in water and associated biogeochemical parameters with a high temporal resolution and estimated air-water CO2 fluxes along the ecosystem continuum. Their lateral fluxes were estimated by using a biogeochemical mass-balance model. The results showed that the waters surrounding mangrove, seagrass, and coral habitats acted as a strong, moderate, and weak source of atmospheric CO2, respectively. The mangrove zone acted as a net source for TAlk, DIC, and DOC, but as a net sink for POC. The contribution of riverine and mangrove-derived OM was substantially high in mangrove sediment, indicating that net transport of POC towards the coastal sea was suppressed by the sediment trapping function of mangroves. The seagrass zone acted as a net source of all carbon forms and TAlk, whereas the coral zone acted as a net sink of TAlk, DIC, and DOC. The lateral transport of carbon from mangroves and rivers offset atmospheric CO2 uptake in the seagrass zone. DOC degradation might increase DIC, and other biogeochemical processes facilitate the functioning of the coral zone as a DOC sink. However, as a result of DIC uptake by autotrophs, mainly in the coral zone, the whole ecosystem continuum was a net sink of DIC and atmospheric CO2 evasion was lowered. We conclude that lateral transport of riverine and mangrove-derived DIC, TAlk, and DOC affect CO2 dynamics and air-water fluxes in seagrass and coral ecosystems. Thus, studies of lateral carbon fluxes at local and regional scales can improve global carbon budget estimates.


Subject(s)
Anthozoa , Ecosystem , Animals , Carbon , Carbon Dioxide , Wetlands
10.
Bio Protoc ; 8(10): e2860, 2018 May 20.
Article in English | MEDLINE | ID: mdl-34285976

ABSTRACT

Inducing an injury specifically to Drosophila flight muscles is a difficult task, owing to the small size of the muscles and the presence of the cuticle. The protocol described below provides an easy and reproducible method to induce injury in the Drosophila flight muscles.

11.
Acta Biotheor ; 62(2): 183-205, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24770902

ABSTRACT

We describe a prey-predator system incorporating constant prey refuge through provision of alternative food to predators. The proposed model deals with a problem of non-selective harvesting of a prey-predator system in which both the prey and the predator species obey logistic law of growth. The long-run sustainability of an exploited system is discussed through provision of alternative food to predators. We have analyzed the variability of the system in presence of constant prey refuge and examined the stabilizing effect on predator-prey system. The steady states of the system are derived and dynamical behavior of the system is extensively analyzed around steady states. The optimal harvesting policy is formulated and solved with the help of Pontryagin's maximal principle. Our objective is to maximize the monetary social benefit through protecting the predator species from extinction, keeping the ecological balance. Results finally illustrated with the help of numerical examples.


Subject(s)
Conservation of Natural Resources , Models, Theoretical , Predatory Behavior , Animals
12.
J Biol Phys ; 39(4): 749-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23949368

ABSTRACT

This paper describes a prey-predator type fishery model with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. The existence of possible steady states, along with their local stability, is discussed. A geometric approach is used to derive the sufficient conditions for global stability of the system at the positive equilibrium. Relative size of the reserve is considered as control in order to study optimal sustainable yield policy. Subsequently, the optimal system is derived and then solved numerically using an iterative method with Runge-Kutta fourth-order scheme. Numerical simulations are carried out to illustrate the importance of marine reserve in fisheries management. It is noted that the marine protected area enables us to protect and restore multi-species ecosystem. The results illustrate that dynamics of the system is extremely interesting if simultaneous effects of a regulatory mechanism like marine reserve is coupled with harvesting effort. It is observed that the migration of the resource, from protected area to unprotected area and vice versa, is playing an important role towards the standing stock assessment in both the areas which ultimately control the harvesting efficiency and enhance the fishing stock up to some extent.


Subject(s)
Conservation of Natural Resources , Ecological and Environmental Phenomena , Food Chain , Models, Biological , Oceans and Seas , Predatory Behavior , Animals , Population Dynamics
13.
C R Biol ; 336(1): 34-45, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23537768

ABSTRACT

In this paper, we propose a prey-predator system with stage structure for predator. The proposed system incorporates cannibalism for predator populations in a competitive environment. The combined fishing effort is considered as control used to harvest the populations. The steady states of the system are determined and the dynamical behavior of the system is discussed. Local stability of the system is analyzed and sufficient conditions are derived for the global stability of the system at the positive equilibrium point. The existence of the Hopf bifurcation phenomenon is examined at the positive equilibrium point of the proposed system. We consider harvesting effort as a control parameter and subsequently, characterize the optimal control parameter in order to formulate the optimal control problem under the dynamic framework towards optimal utilization of the resource. Moreover, the optimal system is solved numerically to investigate the sustainability of the ecosystem using an iterative method with a Runge-Kutta fourth-order scheme. Simulation results show that the optimal control scheme can achieve sustainable ecosystem. Results are analyzed with the help of graphical illustrations.


Subject(s)
Cannibalism/psychology , Competitive Behavior/physiology , Fishes/physiology , Predatory Behavior/physiology , Algorithms , Animals , Computer Simulation , Cyprinidae , Ecosystem , Environment , Models, Statistical , Models, Theoretical , Oncorhynchus mykiss , Population Dynamics
14.
Math Biosci ; 240(2): 212-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22921342

ABSTRACT

The present paper describes a prey-predator type fishery model with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is protected zone. The objective of the paper is to maximize the net economic revenue earn from the fishery through implementing the sustainable properties of the fishery to keep the ecological balance. Biological measures are introduced to increase the understanding of the mechanisms in the bioeconomic system. The importance of marine reserve is analyzed through the obtained results of the numerical simulations of proposed model system. The results depict that reserves will be most effective when coupled with harvesting controls in adjacent fisheries. The paper also incorporates the induced cost and premium from establishing a marine protected area in a fishery. It is found that premium of marine protected area (MPA) increases with the increasing size of the reserve. Results are analyzed with the help of graphical illustrations.


Subject(s)
Conservation of Natural Resources/methods , Fisheries/methods , Fishes/growth & development , Models, Biological , Models, Economic , Animals , Computer Simulation , Conservation of Natural Resources/economics , Fisheries/economics , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...