Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543274

ABSTRACT

Heat-shock proteins (HSPs) are stress-responsive molecules belonging to the family of evolutionary molecular chaperones known to be crucial in many cancer types, including human alveolar adenocarcinoma cells (A549). These proteins are highly overexpressed in cancers to support their ability to accommodate imbalances in cell signalling, DNA alterations, proteins, and energy metabolism associated with oncogenesis. The current study evaluated the effects of gold nanoparticles (AuNPs) combined with cisplatin (CDDP) on molecular chaperone HSPs in A549 cells. It was found that AuNPs:CDDP decreased the percentage of cell viability (38.5%) measured using the modified lactated dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. AuNPs:CDDP exposure caused a significant (p < 0.05) increase in reactive oxygen species (ROS) generation by 1.81-fold, apoptosis induction, and a decrease in the mitochondrial membrane potential (MMP) compared to AuNPs or CDDP alone. Similarly, exposure to the AuNPs:CDDP combination had pronounced cytotoxic effects on the expression of HSPs and PI3K/AKT/mTOR, as well as apoptosis-related proteins. The results demonstrate that the combination of AuNPs with CDDP might enhance the anticancer efficacy of CDDP.

2.
ACS Omega ; 8(43): 40622-40638, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929120

ABSTRACT

Functionalized gold nanoparticles (AuNPs) are widely used in therapeutic applications, but little is known regarding the impact of their surface functionalization in the process of toxicity against cancer cells. This study investigates the anticancer effects of 5 nm spherical AuNPs functionalized with tannate, citrate, and PVP on deubiquitinating enzymes (DUBs) in human lung alveolar adenocarcinoma (A549) cells. Our findings show that functionalized AuNPs reduce the cell viability in a concentration- and time-dependent manner as measured by modified lactate dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. An increased generation of intracellular reactive oxygen species (ROS) and depletion of glutathione (GSH/GSSG) ratio was observed with the highest AuNP concentration of 10 µg/mL. The expression of DUBs such as ubiquitin specific proteases (USP7, USP8, and USP10) was slightly inhibited when treated with concentrations above 2.5 µg/mL. Moreover, functionalized AuNPs showed an inhibitory effect on protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and wingless-related integration site (Wnt) signaling proteins, and this could further trigger mitochondrial related-apoptosis by the upregulation of caspase-3, caspase-9, and PARP in A549 cells. Furthermore, our study shows a mechanistic understanding of how functionalized AuNPs inhibit the DUBs, consequently suppressing cell proliferation, and can be modulated as an approach toward anticancer therapy. The study also warrants the need for future work to investigate the effect of functionalized AuNPs on DUB on other cancer cell lines both in vitro and in vivo.

3.
Front Toxicol ; 5: 1233854, 2023.
Article in English | MEDLINE | ID: mdl-37424745

ABSTRACT

Owing to the size scales that can be accessed, the nanoscale has opened doors to new physical and chemical properties, not seen in the bulk. These properties are leveraged by nanomaterials (NMs) across a plethora of applications. More recently, nanoscale metal-organic frameworks (nMOFs) have witnessed explosive growth due to the modularity of their chemical constituents, the ability to modify their composition and structure, and exceptional properties such as permanent porosity and high surface areas. These properties have prompted the investigation of these materials for applications in biological and environmental contexts. However, one aspect that is often ignored in these discussions is their safety at a nanoscale. In this mini review, we aim to initiate a discussion on the safety and toxicity of nMOFs, drawing parallels with the existing guidelines and literature on the safety of inorganic NMs. We first describe why nMOFs are of considerable interest to the scientific community followed by a discussion on routes through which they can be exposed to the environment and living organisms, particularly shedding light on their transformation mechanisms. The review also discusses the factors affecting toxicity of nMOFs, such as their size, shape, morphology, and composition. We briefly highlight potential mechanisms of toxicity and conclude with describing the need to transition towards data-intensive computational approaches such as machine learning to establish nMOFs as credible materials for their envisioned applications.

4.
Pharmaceutics ; 15(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839757

ABSTRACT

Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5-30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome.

5.
Front Toxicol ; 4: 917749, 2022.
Article in English | MEDLINE | ID: mdl-35846435

ABSTRACT

Metal Organic Frameworks (MOFs) are extensively used for a wide range of applications due to their exceptionally high surface area. MOF particles are conventionally in micron size, but the nanosized MOFs show good transportation/mobility due to their small size, and when combined with the high surface area of MOFs, it makes MOF nanoparticles an ideal candidate to study for environmental remediation. Therefore, it is important to study the ecotoxicological impact of these MOFs. In this study, we developed rhodamine labelled nanoparticles of zinc imidazolate metal organic framework (ZIF-8 MOFs) as a means of in vivo tracing the MOF translocation in C. elegans. Rhodamine B isothiocyanate functionalized ZIF-8 MOFs nanoparticles (RBITC@ZIF-8 MOF nanoparticles; size 44 ± 7 nm) were fed to the worms naturally within a concentration range of 0.16-16.4 µg mg-1. Fluorescence was detected in the pharyngeal and gut lumen regions of the worms after 4 h of treatment, for exposure concentrations >0.163 µg mg-1. A higher intensity of fluorescence was observed at the end of 24 h for all exposure concentrations. Worms treated with RBITC@ZIF-8 MOF concentrations of ≥1.63 µg mg-1 for 24 h showed a bright stable fluorescence signal at the tail region. The uptake of RBITC@ZIF-8 MOF for an exposure concentration of 0.163, 1.63, and 8.2 µg mg-1 was found to be 52.1, 11.4 and 28.6%, respectively. Through this study, we showed that RBITC@ZIF-8 MOFs can be exposed to C. elegans and imaged at low concentrations of ∼0.16 µg mg-1.

6.
Chemosphere ; 286(Pt 2): 131698, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34365176

ABSTRACT

Metal oxide nanoparticles have been extensively studied for their toxicological impacts. However, accurate tracing/quantification of the nanomaterials and their biological responses are difficult to measure at low concentrations. To overcome the challenge, we developed a dual-labelling technique of CuO nanoparticles with a stable isotope of 65Cu, and with rhodamine dye. In vivo experiments on C. elegans were performed using natural feeding of Rhodamine B isothiocyanate-(3 aminopropyl) triethoxysilane functionalized 65CuO nanoprobes (RBITC-APTES@65CuO) (size = 7.41 ± 1 nm) within the range of Predicted Environmental Concentration (PEC) of CuO nanoparticles in soil and sediments. Fluorescence emission (570 nm) was detected in the lumen of the intestine and the pharynx of C. elegans with no impact of nanoparticle exposure on the brood size and life span of worms. The ingested fluorescent labelled RBITC-APTES@65CuO nanoprobes did not enter the reproductive system and were distributed in the alimentary canal of C. elegans. Strong fluorescent signals from the ingested RBITC-APTES@65CuO nanoprobes were achieved even after 24 h of exposure demonstrating the high stability of these nanoprobes in vivo. The net accumulation measured of 65Cu in C. elegans after background subtraction was 0.001 µg mg-1 (3.52 %), 0.005 µg mg-1 (1.76 %) and 0.024 µg mg-1 (1.69 %) for an exposure concentration of 0.0284 µg mg-1, 0.284 µg mg-1, and 1.42 µg mg-1 of 65Cu, respectively. Using C. elegans as a model organism, we demonstrated that RBITC-APTES tagged 65CuO nanoparticles acted as novel nanoprobes for measuring the uptake, accumulation, and biodistribution through quantification and imaging the nanoprobes at a very low exposure concentration (65CuO concentration: 0.033 µg mg-1).


Subject(s)
Metal Nanoparticles , Nanoparticles , Animals , Caenorhabditis elegans , Copper/toxicity , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Tissue Distribution
7.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260400

ABSTRACT

Understanding the potential of nanomaterials (NMs) to cross the blood-brain barrier (BBB), as a function of their physicochemical properties and subsequent behavior, fate, and adverse effect beyond that point, is vital for evaluating the neurological effects arising from their unintentional entry into the brain, which is yet to be fully explored. This is not only due to the complex nature of the brain but also the existing analytical limitations for characterization and quantification of NMs in the complex brain environment. By using a fit-for-purpose analytical workflow and an in vitro BBB model, we show that the physiochemical properties of metallic NMs influence their biotransformation in biological matrices, which in turn modulates the transport form, efficiency, amounts, and pathways of NMs through the BBB and, consequently, their neurotoxicity. The data presented here will support in silico modeling and prediction of the neurotoxicity of NMs and facilitate the tailored design of safe NMs.


Subject(s)
Blood-Brain Barrier/metabolism , Metals/chemistry , Nanostructures/chemistry , Astrocytes/metabolism , Biotransformation , Brain/blood supply , Endothelial Cells/metabolism , Exocytosis , Humans , Microvessels/cytology , Models, Biological , Permeability , Transcytosis
8.
Adv Biol (Weinh) ; 5(9): e2100637, 2021 09.
Article in English | MEDLINE | ID: mdl-34288601

ABSTRACT

The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.


Subject(s)
Graphite , Protein Corona , Graphite/toxicity , Humans
9.
Carbohydr Polym ; 237: 116170, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32241417

ABSTRACT

Poly (lactide-co-glycolide) (PLGA) nanoparticles surface functionalized with water soluble glycol chitosan (GC) and carboxymethyl chitosan (CMC) has been studied for their drug (Paclitaxel and Doxorubicin) loading, yield, cellular uptake, serum protein adsorption and hemocompatibility. It was observed that Paclitaxel (Ptxl) phase out as Extraneous Ptxl Precipitates (EPP) (>25 %) in case of uncoated and CMC coated low molecular weight (LMW) PLGA nanoparticles (PNPs). The EPP formation was significantly reduced to ∼5 % with GC coating as it enhanced LMW PLGA precipitation and yield predominantly spherical polymeric nanoparticles towards better encapsulation of Ptxl and thus uniform intracellular drug distribution. Interestingly, protein corona analysis showed cmcPNPs and gcPNPs to be distinct from each other in associating mainly with serum proteins of molecular weight < 30 kDa and >30 kDa respectively. While CMC functionalization showed >10 % hemolysis, at similar concentration GC coating was found to provide superior hemocompatibility even in the absence of protein corona.


Subject(s)
Antineoplastic Agents, Phytogenic , Chitosan , Nanoparticles , Paclitaxel , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chemical Precipitation , Chitosan/administration & dosage , Chitosan/chemistry , Drug Liberation , Erythrocytes/drug effects , Goats , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Protein Corona , Rats
10.
Int J Biol Macromol ; 110: 392-398, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29174361

ABSTRACT

Multifunctional biodegradable nanomaterials that could be used for both imaging and therapy are being researched extensively. A simple technique to synthesize multifunctional nanoparticles without compromising on any of their functionality is a challenge. We have attempted to optimize a two-step procedure of gold coated polymeric template involving 1) Single pot synthesis of PLGA nanoparticles with cationic surface charge using glycol chitosan and 2) in situ gold coating for formation of gold coated PLGA nanoshell (AuPLGA-NS). These gold-coated PLGA nanoparticles were explored for photothermal therapy (PTT) and as X-ray/CT contrast agents. Biocompatibility and photothermal cytotoxicity of AuPLGA-NS were evaluated in-vitro and results confirmed the therapeutic efficacy of these particles resulting in 80% cancer cell death. Besides, it also showed potential X-ray/CT imaging ability with contrast equivalent to that of Iodine. The results demonstrated that these gold-coated PLGA nanoparticles synthesized by a simple approach could be used as a multifunctional nanosystem for cancer theranostics.


Subject(s)
Antineoplastic Agents , Breast Neoplasms/therapy , Chitosan , Gold , Hyperthermia, Induced/methods , Nanoshells , Photochemotherapy/methods , Theranostic Nanomedicine/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chitosan/chemistry , Chitosan/pharmacology , Female , Gold/chemistry , Gold/pharmacology , Humans , Lactic Acid/chemistry , Lactic Acid/pharmacology , MCF-7 Cells , Mice , Nanoshells/chemistry , Nanoshells/therapeutic use , Oxidation-Reduction , Polyglycolic Acid/chemistry , Polyglycolic Acid/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer
11.
J Biomed Mater Res A ; 105(10): 2906-2928, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28643475

ABSTRACT

Nanotechnology has emerged strongly as a viable option to overcome the challenge of early diagnosis and effective drug delivery, for cancer treatment. Emerging research articles have expounded the advantages of using a specific type of nanomaterial-based system called as "nanocarriers," for anti-cancer therapy. The nanocarrier system is used as a transport unit for targeted drug delivery of the therapeutic drug moiety. In order for the nanocarriers to be effective for anticancer therapy, their physicochemical parameter needs to be tuned so that bio-functionalisation can be achieved to (1) allow drugs being attached to the substrate and for their controlled release, (2) ensure the stability of the nanocarrier up to the point of delivery, and (3) clearance of the nanocarrier after the delivery. It is therefore envisaged that tailoring of the physicochemical properties of nanocarriers can greatly influence their reactivity and interaction in the biological milieu, and this is becoming an important parameter for increasing the efficacy of cancer therapy. This review emphasizes the importance of physicochemical properties of nanocarriers, and how they influence its usage as chemotherapeutic drug carriers. The goal of this review is to present a correlation between the physicochemical properties of the nanocarriers and its intended action, and how their design based on these properties can enhance their cancer combating abilities while minimizing damage to the healthy tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2906-2928, 2017.


Subject(s)
Antineoplastic Agents/administration & dosage , Delayed-Action Preparations/chemistry , Nanostructures/chemistry , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Drug Delivery Systems/methods , Drug Liberation , Humans , Nanomedicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...