Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 18(35): 24060-24075, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39172696

ABSTRACT

The synchronization of the electrical and mechanical coupling assures the physiological pump function of the heart, but life-threatening pathologies may jeopardize this equilibrium. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a model for personalized investigation because they can recapitulate human diseased traits, such as compromised electrical capacity or mechanical circuit disruption. This research avails the model of hiPSC-CMs and showcases innovative techniques to study the electrical and mechanical properties as well as their modulation due to inherited cardiomyopathies. In this work, hiPSC-CMs carrying either Brugada syndrome (BRU) or dilated cardiomyopathy (DCM), were organized in a bilayer configuration to first validate the experimental methods and second mimic the physiological environment. High-density CMOS-based microelectrode arrays (HD-MEA) have been employed to study the electrical activity. Furthermore, mechanical function was investigated via quantitative video-based evaluation, upon stimulation with a ß-adrenergic agonist. This study introduces two experimental methods. First, high-throughput mechanical measurements in the hiPSC-CM layers (xy-inspection) are obtained using both a recently developed optical tracker (OPT) and confocal reference-free traction force microscopy (cTFM) aimed to quantify cardiac kinematics. Second, atomic force microscopy (AFM) with FluidFM probes, combined with the xy-inspection methods, supplemented a three-dimensional understanding of cell-cell mechanical coupling (xyz-inspection). This particular combination represents a multi-technique approach to detecting electrical and mechanical latency among the cell layers, examining differences and possible implications following inherited cardiomyopathies. It can not only detect disease characteristics in the proposed in vitro model but also quantitatively assess its response to drugs, thereby demonstrating its feasibility as a scalable tool for clinical and pharmacological studies.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Microelectrodes , Brugada Syndrome , Cardiomyopathy, Dilated/pathology , Electrophysiological Phenomena , Cells, Cultured
2.
Biomater Adv ; 152: 213485, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37302211

ABSTRACT

Ventricular assist devices (VADs) provide an alternative solution to heart transplantation for patients with end-stage heart failure. Insufficient hemocompatibility of VAD components can result in severe adverse events, such as thromboembolic stroke, and readmissions. To enhance VAD hemocompatibility, and avoid thrombus formation, surface modification techniques and endothelialization strategies are employed. In this work, a free form patterning topography is selected to facilitate the endothelialization of the outer surface of the inflow cannula (IC) of a commercial VAD. An endothelialization protocol for convoluted surfaces such as the IC is produced, and the retainment of the endothelial cell (EC) monolayer is evaluated. To allow this evaluation, a dedicated experimental setup is developed to simulate realistic flow phenomena inside an artificial, beating heart phantom with a VAD implanted on its apex. The procedural steps of mounting the system result to the impairment of the EC monolayer, which is further compromised by the developed flow and pressure conditions, as well as by the contact with the moving inner structures of the heart phantom. Importantly, the EC monolayer is better maintained in the lower part of the IC, which is more susceptible to thrombus formation and may therefore aid in minimizing the hemocompatibility related adverse events after the VAD implantation.


Subject(s)
Heart Failure , Heart Transplantation , Heart-Assist Devices , Thrombosis , Humans , Heart Failure/surgery , Heart Failure/etiology , Cannula , Heart-Assist Devices/adverse effects
3.
Nano Lett ; 23(7): 2467-2475, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36975035

ABSTRACT

Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.


Subject(s)
Cell Adhesion , Extracellular Matrix , Focal Adhesions , Mechanotransduction, Cellular , Animals , Humans , Cell Adhesion/physiology , Cell Membrane/physiology , Focal Adhesions/metabolism , Focal Adhesions/physiology , Mammals/anatomy & histology , Mammals/physiology , Mechanical Phenomena , Mechanotransduction, Cellular/physiology , Microscopy, Atomic Force/methods , Extracellular Matrix/physiology
4.
Front Cardiovasc Med ; 9: 953582, 2022.
Article in English | MEDLINE | ID: mdl-36277782

ABSTRACT

Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.

5.
Adv Sci (Weinh) ; 9(16): e2102148, 2022 05.
Article in English | MEDLINE | ID: mdl-35344288

ABSTRACT

Endothelial monolayers physiologically adapt to flow and flow-induced wall shear stress, attaining ordered configurations in which elongation, orientation, and polarization are coherently organized over many cells. Here, with the flow direction unchanged, a peculiar bi-stable (along the flow direction or perpendicular to it) cell alignment is observed, emerging as a function of the flow intensity alone, while cell polarization is purely instructed by flow directionality. Driven by the experimental findings, the parallelism between endothelia is delineated under a flow field and the transition of dual-frequency nematic liquid crystals under an external oscillatory electric field. The resulting physical model reproduces the two stable configurations and the energy landscape of the corresponding system transitions. In addition, it reveals the existence of a disordered, metastable state emerging upon system perturbation. This intermediate state, experimentally demonstrated in endothelial monolayers, is shown to expose the cellular system to a weakening of cell-to-cell junctions to the detriment of the monolayer integrity. The flow-adaptation of monolayers composed of healthy and senescent endothelia is successfully predicted by the model with adjustable nematic parameters. These results may help to understand the maladaptive response of in vivo endothelial tissues to disturbed hemodynamics and the progressive functional decay of senescent endothelia.


Subject(s)
Intercellular Junctions , Liquid Crystals , Anisotropy , Endothelium , Liquid Crystals/chemistry , Stress, Mechanical
6.
iScience ; 25(3): 103890, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35252807

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is among the most common liver pathologies, however, none approved condition-specific therapy yet exists. The present study introduces a drug repositioning (DR) approach that combines in vitro steatosis models with a network-based computational platform, constructed upon genomic data from diseased liver biopsies and compound-treated cell lines, to propose effectively repositioned therapeutic compounds. The introduced in silico approach screened 20'000 compounds, while complementary in vitro and proteomic assays were developed to test the efficacy of the 46 in silico predictions. This approach successfully identified six compounds, including the known anti-steatogenic drugs resveratrol and sirolimus. In short, gallamine triethiotide, diflorasone, fenoterol, and pralidoxime ameliorate steatosis similarly to resveratrol/sirolimus. The implementation holds great potential in reducing screening time in the early drug discovery stages and in delivering promising compounds for in vivo testing.

7.
Nano Lett ; 21(12): 4911-4920, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34081865

ABSTRACT

Endothelial senescence entails alterations of the healthy cell phenotype, which accumulate over time and contribute to cardiovascular disease. Mechanical aspects regulating cell adhesion, force generation, and the response to flow contribute to the senescence-associated drift; however, they remain largely unexplored. Here, we exploit force microscopy to resolve variations of the cell anchoring to the substrate and the tractions generated upon aging in the nanonewton (nN) range. Senescent endothelial cells display a multifold increase in the levels of basal adhesion and force generation supported by mature and strong focal adhesions. The enhanced mechanical interaction with the substrate yields static endothelial monolayers that polarize in response to flow but fail the process of coordinated cell shape remodeling and reorientation. The emerging picture indicates that senescence reinforces the local cell interaction with the substrate and may therefore prevent endothelial denudation; however, it compromises the ability to functionally adapt to the local hemodynamic conditions.


Subject(s)
Endothelial Cells , Focal Adhesions , Cell Adhesion , Cell Communication , Cells, Cultured , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL