Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108418

ABSTRACT

Listeria monocytogenes virulence factor InlB specifically interacts with the receptors c-Met and gC1q-R. Both receptors are present in non-professional and professional phagocytes, including macrophages. Phylogenetically defined InlB isoforms differently support invasion into non-professional phagocytes. This work deals with the effects of InlB isoforms on L. monocytogenes uptake and intracellular proliferation in human macrophages. Three isoforms of the receptor binding domain (idInlB) were derived from phylogenetically distinct L. monocytogenes strains belonging to the highly virulent CC1 (idInlBCC1), medium-virulence CC7 (idInlBCC7), and low-virulence CC9 (idInlBCC9) clonal complexes. The constant dissociation increased in the order idInlBCC1 << idInlBCC7 < idInlBCC9 for interactions with c-Met, and idInlBCC1 ≈ idInlBCC7 < idInlBCC9 for interactions with gC1q-R. The comparison of uptake and intracellular proliferation of isogenic recombinant strains which expressed full-length InlBs revealed that the strain expressing idInlBCC1 proliferated in macrophages twice as efficiently as other strains. Macrophage pretreatment with idInlBCC1 followed by recombinant L. monocytogenes infection disturbed macrophage functions decreasing pathogen uptake and improving its intracellular multiplication. Similar pretreatment with idInlBCC7 decreased bacterial uptake but also impaired intracellular multiplication. The obtained results demonstrated that InlB impaired macrophage functions in an idInlB isoform-dependent manner. These data suggest a novel InlB function in L. monocytogenes virulence.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Humans , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Protein Isoforms/metabolism , Virulence Factors/metabolism , Proto-Oncogene Proteins c-met/metabolism
2.
J Dairy Sci ; 106(3): 1638-1649, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36710191

ABSTRACT

The gram-positive bacterium Listeria monocytogenes is an important foodborne pathogen contaminating dairy products. Closely related to L. monocytogenes saprophytic Listeria spp. are also frequent contaminators of food and, particularly, dairy products. To distinguish L. monocytogenes from nonpathogenic Listeria spp. and other bacteria, a dot-immunoassay was developed. The immunoassay is based on the polyclonal antibody to the secreted form of the surface virulence-associated L. monocytogenes-specific InlB protein. To increase InlB production, bacteria were grown on the brain-heart infusion agar supplemented with 0.2% activated charcoal (BHIC agar). Direct plating of artificially contaminated raw milk samples on the BHIC agar followed by the dot-immunoassay allowed a rapid identification of L. monocytogenes in concentrations as little as 10 cfu/mL. Using the developed approach, preliminary results were obtained within 14 h, and the final results were obtained after 26 h. The dot-immunoassay was tested on L. monocytogenes strains belonging to different clonal complexes and phylogenetic lineages, Listeria spp., and other bacterial species. Results showed the exceptional specificity of the developed dot-immunoassay for the rapid identification of L. monocytogenes.


Subject(s)
Listeria monocytogenes , Listeria , Animals , Milk/microbiology , Agar , Phylogeny , Immunoassay/veterinary , Food Microbiology
3.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769085

ABSTRACT

Approximately 1/6 of humanity is at high risk of experiencing cholera epidemics. The development of effective and safe vaccines against Vibrio cholerae, the primary cause of cholera, is part of the public health measures to prevent cholera epidemics. Natural nontoxigenic V. cholerae isolates represent a source of new genetically improved and relatively safe vaccine strains. However, the genomic engineering of wild-type V. cholerae strains is difficult, and these strains are genetically unstable due to their high homologous recombination activity. We comprehensively characterized two V. cholerae isolates using genome sequencing, bioinformatic analysis, and microscopic, physiological, and biochemical tests. Genetic constructs were Gibson assembled and electrotransformed into V. cholerae. Bacterial colonies were assessed using standard microbiological and immunological techniques. As a result, we created a synthetic chromoprotein-expressing reporter operon. This operon was used to improve the V. cholerae genome engineering approach and monitor the stability of the genetic constructs. Finally, we created a stable candidate V. cholerae vaccine strain bearing a recA deletion and expressing the ß-subunit of cholera toxin. Thus, we developed a strategy for the rapid creation of genetically stable and relatively safe candidate vaccine strains. This strategy can be applied not only to V. cholerae but also to other important human bacterial pathogens.


Subject(s)
Cholera Vaccines , Operon , Vibrio cholerae/genetics , Gene Transfer Techniques , Genes, Reporter , Genetic Engineering , Genome, Bacterial
4.
Drug Dev Res ; 82(1): 123-132, 2021 02.
Article in English | MEDLINE | ID: mdl-32830369

ABSTRACT

Hepatocyte growth factor (HGF) is central to liver regeneration. The Internalin B (InlB) protein is a virulence factor produced by the pathogenic bacterium Listeria monocytogenes. InlB is known to mimic HGF activity by interacting with the HGF receptor (HGFR) and activating HGFR-controlled signaling pathways. We expressed and purified the HGFR-binding InlB domain, InlB321/15, cloned from the fully virulent clinical L. monocytogenes strain. HGFR and Erk1/2 phosphorylation was determined using Western blotting. The capacity of InlB321/15 to bind HGFR was measured using microscale thermophoresis. Liver regeneration was studied in a model of 70% partial hepatectomy (70%PHx) in male Wistar rats. The nuclear grade parameters were quantified using manual (percentage of binuclear hepatocytes), automated (nuclear diameters), or combined (Ki67 proliferation index) scoring methods. Purified InlB321/15 stimulated HGFR and Erk1/2 phosphorylation and accelerated the proliferation of HepG2 cells. InlB321/15 bound HGFR with Kd = 7.4 ± 1.3 nM. InlB321/15 injected intravenously on the second, fourth, and sixth days after surgery recovered the liver mass and improved the nuclear grade parameters. Seven days post 70% PHx, the liver weight indexes were 2.9 and 2.0%, the hepatocyte proliferation indexes were 19.8 and 0.6%, and the percentages of binucleated hepatocytes were 6.7 and 4.0%, in the InlB321/15-treated and control animals, respectively. Obtained data demonstrated that InlB321/15 improved hepatocyte proliferation and stimulated liver regeneration in animals with 70% hepatectomy.


Subject(s)
Bacterial Proteins/pharmacology , Liver Regeneration/drug effects , Proto-Oncogene Proteins c-met/agonists , Animals , Bacterial Proteins/genetics , Cell Proliferation/drug effects , Hep G2 Cells , Hepatectomy , Humans , Listeria monocytogenes , Male , Proto-Oncogene Proteins c-met/genetics , Rats, Wistar , Recombinant Proteins/pharmacology
5.
Pathogens ; 8(4)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614553

ABSTRACT

Listeriosis is one of the most significant humans and animals foodborne infectious diseases. Here, we characterized 48 Listeria monocytogenes strains isolated in the territory of inner Eurasia during the second half of the 20th century. A total of 23 strains (52.3%) were susceptible to the nine antibiotics tested, 30.43%, 15.22%, and 8.7% were resistant penicillin G, ampicillin, and enrofloxacin, respectively. We applied the multilocus sequence typing (MLST) scheme to determine the phylogenetic positions of the strains. All but one strain belonged to the II phylogenetic lineage, and the majority of the strains belonged to one of the previously described clonal complexes (СCs). More than 60% of the strains belonged to the clonal complex CC7 that prevailed among all sources, including cattle (58%), small ruminants (64%), rodents (71%), and humans (50%). Further, CC7, CC101, and CC124 were found among human isolates. The MLST scheme was supplemented with virulence gene analysis. In total, eight inlA, six inlB, and six inlC allelic variants were found, and all but one strain carried one of the two inlE alleles. Most strains (62.5%) belonged to the same multivirulence locus sequence typing (MvLST) type, which includes CC7, inlA allele 4, inlB allele 14, inlC allele 6, and inlE allele 8.

6.
Arch Dermatol Res ; 310(10): 849-856, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30306262

ABSTRACT

Studies of factors affecting wound-healing rates are encouraged by a critical need for new treatments to manage an increasing burden of non-healing wounds. The InlB protein produced by the Gram-positive bacterium Listeria monocytogenes is an agonist of the tyrosine kinase receptor c-Met and a functional analog of the hepatocyte growth factor (HGF), which is a mammalian ligand of c-Met. The recombinant InlB321 protein, which is the c-Met-binding InlB domain (amino acids 31-321), was cloned from the L. monocytogenes serovar 4b clinical strain VIMHA015 and serovar 1/2a strain EGDe (InlB321/15 and InlB321/EGDe, respectively). Both InlB321 variants stimulated proliferation of endothelial HUVEC cells. InlB321/15 was more active in Erk1/2 phosphorylation assay, and more potent than InlB321/EGDe in the 2D-scratch wound-healing assay. Scratch closure reached 86%, 29% and 72% for InlB321/15, InlB321/EGDe and HGF, respectively, 72 h post-wounding (p < 0.05). Topically applied glycerol-mixed InlB321/15 (300 µg ml- 1) increased abrasion wound-healing rates in mice. The 50% wound closing time (CT50) was reduced by InlB321/15 (4.18 ± 0.91 days; CI: 3.05; 5.31) compared with control animals (5.51 ± 1.21 days; CI: 4.01; 7.01; p < 0.05). Taken together, obtained results suggested a potential of InlB321/15 as a means of accelerating wound healing.


Subject(s)
Bacterial Proteins/pharmacology , Hepatocyte Growth Factor/metabolism , Membrane Proteins/pharmacology , Skin/injuries , Wound Healing/drug effects , Animals , Bacterial Proteins/adverse effects , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Human Umbilical Vein Endothelial Cells , Humans , Listeria monocytogenes/metabolism , Membrane Proteins/adverse effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Phosphorylation/drug effects , Proto-Oncogene Proteins c-met/agonists , Recombinant Proteins/pharmacology
7.
Biomed Res Int ; 2017: 2101575, 2017.
Article in English | MEDLINE | ID: mdl-29445733

ABSTRACT

The facultative intracellular pathogen Listeria monocytogenes causes a severe food-borne infection in humans and animals. L. monocytogenes invasion factor InlB interacts with the tyrosine kinase c-Met via the N-terminal internalin domain. Previously, distinct variants of the InlB internalin domain (idInlB) have been described in L. monocytogenes field isolates. Three variants were used to restore full-length InlB expression in the L. monocytogenes strain EGDeΔinlB. Obtained isogenic L. monocytogenes strains were tested in the invasion assay and intravenous, intraperitoneal, and intragastric models of infection in mice. All idInlBs were functional, restored InlB activity as an invasion factor, and improved invasion of the parental strain EGDeΔinlB into human kidney HEK23 cells. Meanwhile, distinct idInlBs provided different mortality rates and bacterial loads in internal organs. When recombinant strains were compared, the variant designated idInlB14 decreased severity of disease caused by intravenous and intraperitoneal bacterial administration, whereas this variant improved intestine colonization and stimulated intragastric infection. Obtained results demonstrated that naturally occurring idInlBs differed in their impact on severity of L. monocytogenes infection in mice in dependence on the infection route.


Subject(s)
Bacterial Proteins/genetics , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Membrane Proteins/genetics , Administration, Intravenous , Animals , Cytoplasm/microbiology , Cytoplasm/pathology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Gene Expression Regulation, Bacterial , HEK293 Cells , Humans , Injections, Intraperitoneal , Listeria monocytogenes/genetics , Listeriosis/genetics , Listeriosis/pathology , Mice , Protein Domains , Severity of Illness Index
8.
Biochim Biophys Acta ; 1814(1): 94-101, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20650335

ABSTRACT

In this paper we summarized our experimental data on the electrochemical reduction of cytochrome P450. Electrode/cytochrome P450 systems were analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Bioelectrocatalysis-based screening of potential substrates or inhibitors of cytochrome P450, stoichiometry of the electrocatalytic cycle, redox thermodynamics and the peroxide shunt pathway were described. Characteristics, performance and potential application of cytochrome P450-electrodes are discussed.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Electrochemical Techniques/methods , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Biocatalysis/drug effects , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P450 Family 2 , Electrochemical Techniques/instrumentation , Electrodes , Electron Transport , Enzyme Inhibitors/pharmacology , Kinetics , Metyrapone/pharmacology , Models, Chemical , Oxidation-Reduction/drug effects , Rabbits , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...