Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
bioRxiv ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39091841

ABSTRACT

Glycoproteomics is a rapidly developing field, and data analysis has been stimulated by several technological innovations. As a result, there are many software tools from which to choose; and each comes with unique features that can be difficult to compare. This work presents a head-to-head comparison of five modern analytical software: Byonic, Protein Prospector, MSFraggerGlyco, pGlyco3, and GlycoDecipher. To enable a meaningful comparison, parameter variables were minimized. One potential confounding variable is the glycan database that informs glycoproteomic searches. We performed glycomic profiling of the samples and used the output to construct matched glycan databases for each software. Up to 19,000 glycopeptide spectra were identified across three replicates of wild-type SH-SY5Y cells. There was substantial overlap among most software for glycoproteins identified, locations of glycosites, and glycans, although Byonic reported a suspiciously large number of glycoproteins and glycosites of questionable reliability. We show that Protein Prospector identified the most glycopeptide spectrum matches with high agreement to known glycosites in UniProt. Overall, our results indicate that glycoproteomic searches should involve more than one software to generate confidence. It may be useful to consider software with peptide-first approaches and with glycan-first approaches.

2.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585857

ABSTRACT

Collagen cross-links created by the lysyl oxidase and lysyl hydroxylase families of enzymes are a significant contributing factor to the biomechanical strength and rigidity of tissues, which in turn influence cell signaling and ultimately cell phenotype. In the clinic, the proteolytically liberated N-terminal cross-linked peptide of collagen I (NTX) is used as a biomarker of bone and connective tissue turnover, which is altered in several disease processes. Despite the clinical utility of these collagen breakdown products, the majority of the cross-linked peptide species have not been identified in proteomic datasets. Here we evaluate several parameters for the preparation and identification of these peptides from the collagen I-rich Achilles tendon. Our refined approach involving chemical digestion for protein solubilization coupled with mass spectrometry allows for the identification of the NTX cross-links in a range of modification states. Based on the specificity of the enzymatic cross-linking reaction we utilized follow-up variable modification searches to facilitate identification with a wider range of analytical workflows. We then applied a spectral library approach to identify differences in collagen cross-links in bovine pulmonary hypertension. The presented method offers unique opportunities to understand extracellular matrix remodeling events in development, aging, wound healing, and fibrotic disease that modulate collagen architecture through lysyl-hydroxylase and lysyl-oxidase enzymes.

3.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645031

ABSTRACT

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.

4.
Nat Cell Biol ; 25(11): 1600-1615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857833

ABSTRACT

A widespread strategy employed by pathogens to establish infection is to inhibit host-cell protein synthesis. Legionella pneumophila, an intracellular bacterial pathogen and the causative organism of Legionnaires' disease, secretes a subset of protein effectors into host cells that inhibit translation elongation. Mechanistic insights into how the bacterium targets translation elongation remain poorly defined. We report here that the Legionella effector SidI functions in an unprecedented way as a transfer-RNA mimic that directly binds to and glycosylates the ribosome. The 3.1 Å cryo-electron microscopy structure of SidI reveals an N-terminal domain with an 'inverted L' shape and surface-charge distribution characteristic of tRNA mimicry, and a C-terminal domain that adopts a glycosyl transferase fold that licenses SidI to utilize GDP-mannose as a sugar precursor. This coupling of tRNA mimicry and enzymatic action endows SidI with the ability to block protein synthesis with a potency comparable to ricin, one of the most powerful toxins known. In Legionella-infected cells, the translational pausing activated by SidI elicits a stress response signature mimicking the ribotoxic stress response, which is activated by elongation inhibitors that induce ribosome collisions. SidI-mediated effects on the ribosome activate the stress kinases ZAKα and p38, which in turn drive an accumulation of the protein activating transcription factor 3 (ATF3). Intriguingly, ATF3 escapes the translation block imposed by SidI, translocates to the nucleus and orchestrates the transcription of stress-inducible genes that promote cell death, revealing a major role for ATF3 in the response to collided ribosome stress. Together, our findings elucidate a novel mechanism by which a pathogenic bacterium employs tRNA mimicry to hijack a ribosome-to-nuclear signalling pathway that regulates cell fate.


Subject(s)
Legionella pneumophila , Legionella , Legionnaires' Disease , Humans , Legionella/metabolism , Cryoelectron Microscopy , Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Transferases/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology
5.
Mol Cell Proteomics ; 22(4): 100522, 2023 04.
Article in English | MEDLINE | ID: mdl-36863607

ABSTRACT

PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.


Subject(s)
Protein Kinase C-epsilon , Signal Transduction , Mice , Animals , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Ethanol , Alcohol Drinking/genetics , Brain/metabolism
6.
Plant Cell ; 35(5): 1318-1333, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36739885

ABSTRACT

The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Growth Regulators/metabolism , Repressor Proteins/metabolism , Sugars/metabolism , Proteomics
7.
Mol Cell Proteomics ; 22(3): 100497, 2023 03.
Article in English | MEDLINE | ID: mdl-36642223

ABSTRACT

New protein synthesis is regulated both at the level of mRNA transcription and translation. RNA-Seq is effective at measuring levels of mRNA expression, but techniques to monitor mRNA translation are much more limited. Previously, we reported results from O-propargyl-puromycin (OPP) labeling of proteins undergoing active translation in a 2-h time frame, followed by biotinylation using click chemistry, affinity purification, and on-bead digestion to identify nascent proteins by mass spectrometry (OPP-ID). As with any on-bead digestion protocol, the problem of nonspecific binders complicated the rigorous categorization of nascent proteins by OPP-ID. Here, we incorporate a chemically cleavable linker, Dde biotin-azide, into the protocol (OPP-IDCL) to provide specific release of modified proteins from the streptavidin beads. Following capture, the Dde moiety is readily cleaved with 2% hydrazine, releasing nascent polypeptides bearing OPP plus a residual C3H8N4 tag. When results are compared side by side with the original OPP-ID method, change to a cleavable linker led to a dramatic reduction in the number of background proteins detected in controls and a concomitant increase in the number of proteins that could be characterized as newly synthesized. We evaluated the method's ability to detect nascent proteins at various submilligram protein input levels and showed that, when starting with only 100 µg of protein, ∼1500 nascent proteins could be identified with low background. Upon treatment of K562 cells with MLN128, a potent inhibitor of the mammalian target of rapamycin, prior to OPP treatment, we identified 1915 nascent proteins, the majority of which were downregulated upon inhibitor treatment. Repressed proteins with log2 FC <-1 revealed a complex network of functionally interacting proteins, with the largest cluster associated with translational initiation. Overall, incorporation of the Dde biotin-azide cleavable linker into our protocol has increased the depth and accuracy of profiling of nascent protein networks.


Subject(s)
Azides , Biotin , Proteins/chemistry , Peptides , RNA, Messenger
8.
Front Plant Sci ; 13: 832585, 2022.
Article in English | MEDLINE | ID: mdl-35592564

ABSTRACT

Accurate relative quantification is critical in proteomic studies. The incorporation of stable isotope 15N to plant-expressed proteins in vivo is a powerful tool for accurate quantification with a major advantage of reducing preparative and analytical variabilities. However, 15N labeling quantification has several challenges. Less identifications are often observed in the heavy-labeled samples because of incomplete labeling, resulting in missing values in reciprocal labeling experiments. Inaccurate quantification can happen when there is contamination from co-eluting peptides or chemical noise in the MS1 survey scan. These drawbacks in quantification can be more pronounced in less abundant but biologically interesting proteins, which often have very few identified peptides. Here, we demonstrate the application of parallel reaction monitoring (PRM) to 15N labeled samples on a high resolution, high mass accuracy Orbitrap mass spectrometer to achieve reliable quantification even of low abundance proteins in samples.

9.
Front Plant Sci ; 13: 832562, 2022.
Article in English | MEDLINE | ID: mdl-35242158

ABSTRACT

Metabolic labeling using stable isotopes is widely used for the relative quantification of proteins in proteomic studies. In plants, metabolic labeling using 15N has great potential, but the associated complexity of data analysis has limited its usage. Here, we present the 15N stable-isotope labeled protein quantification workflow utilizing open-access web-based software Protein Prospector. Further, we discuss several important features of 15N labeling required to make reliable and precise protein quantification. These features include ratio adjustment based on labeling efficiency, median and interquartile range for protein ratios, isotope cluster pattern matching to flag incorrect monoisotopic peak assignment, and caching of quantification results for fast retrieval.

10.
Bioinformatics ; 38(9): 2422-2427, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35191489

ABSTRACT

MOTIVATION: Tumor-specific antigen (TSA) identification in human cancer predicts response to immunotherapy and provides targets for cancer vaccine and adoptive T-cell therapies with curative potential, and TSAs that are highly expressed at the RNA level are more likely to be presented on major histocompatibility complex (MHC)-I. Direct measurements of the RNA expression of peptides would allow for generalized prediction of TSAs. Human leukocyte antigen (HLA)-I genotypes were predicted with seq2HLA. RNA sequencing (RNAseq) fastq files were translated into all possible peptides of length 8-11, and peptides with high and low expressions in the tumor and control samples, respectively, were tested for their MHC-I binding potential with netMHCpan-4.0. RESULTS: A novel pipeline for TSA prediction from RNAseq was used to predict all possible unique peptides size 8-11 on previously published murine and human lung and lymphoma tumors and validated on matched tumor and control lung adenocarcinoma (LUAD) samples. We show that neoantigens predicted by exomeSeq are typically poorly expressed at the RNA level, and a fraction is expressed in matched normal samples. TSAs presented in the proteomics data have higher RNA abundance and lower MHC-I binding percentile, and these attributes are used to discover high confidence TSAs within the validation cohort. Finally, a subset of these high confidence TSAs is expressed in a majority of LUAD tumors and represents attractive vaccine targets. AVAILABILITY AND IMPLEMENTATION: The datasets were derived from sources in the public domain as follows: TSAFinder is open-source software written in python and R. It is licensed under CC-BY-NC-SA and can be downloaded at https://github.com/RNAseqTSA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Humans , Mice , Antigens, Neoplasm/genetics , Lung Neoplasms/genetics , Peptides/metabolism , RNA , Sequence Analysis, RNA
11.
Sci Adv ; 8(4): eabi7711, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35089788

ABSTRACT

Cancer persister cells are able to survive otherwise lethal doses of drugs through nongenetic mechanisms, which can lead to cancer regrowth and drug resistance. The broad spectrum of molecular differences observed between persisters and their treatment-naïve counterparts makes it challenging to identify causal mechanisms underlying persistence. Here, we modulate environmental signals to identify cellular mechanisms that promote the emergence of persisters and to pinpoint actionable vulnerabilities that eliminate them. We found that interferon-γ (IFNγ) can induce a pro-persistence signal that can be specifically eliminated by inhibition of type I protein arginine methyltransferase (PRMT) (PRMTi). Mechanistic investigation revealed that signal transducer and activator of transcription 1 (STAT1) is a key component connecting IFNγ's pro-persistence and PRMTi's antipersistence effects, suggesting a previously unknown application of PRMTi to target persisters in settings with high STAT1 expression. Modulating environmental signals can accelerate the identification of mechanisms that promote and eliminate cancer persistence.


Subject(s)
Anti-Bacterial Agents , Neoplasms , Anti-Bacterial Agents/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/etiology
13.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Article in English | MEDLINE | ID: mdl-34725484

ABSTRACT

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Subject(s)
Glycopeptides/blood , Glycoproteins/blood , Informatics/methods , Proteome/analysis , Proteomics/methods , Research Personnel/statistics & numerical data , Software , Glycosylation , Humans , Proteome/metabolism , Tandem Mass Spectrometry
14.
Mol Cell Proteomics ; 20: 100031, 2021.
Article in English | MEDLINE | ID: mdl-32938750

ABSTRACT

O-GlcNAcylation, the addition of a single N-acetylglucosamine residue to serine and threonine residues of cytoplasmic, nuclear, or mitochondrial proteins, is a widespread regulatory posttranslational modification. It is involved in the response to nutritional status and stress, and its dysregulation is associated with diseases ranging from Alzheimer's to diabetes. Although the modification was first detected over 35 years ago, research into the function of O-GlcNAcylation has accelerated dramatically in the last 10 years owing to the development of new enrichment and mass spectrometry techniques that facilitate its analysis. This article summarizes methods for O-GlcNAc enrichment, key mass spectrometry instrumentation advancements, particularly those that allow modification site localization, and software tools that allow analysis of data from O-GlcNAc-modified peptides.


Subject(s)
Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Animals , Humans , Immunoprecipitation , Lectins/chemistry , Mass Spectrometry , Protein Processing, Post-Translational , Software
15.
Structure ; 28(11): 1259-1268, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33065067

ABSTRACT

Cross-linking mass spectrometry (MS) has substantially matured as a method over the past 2 decades through parallel development in multiple labs, demonstrating its applicability to protein structure determination, conformation analysis, and mapping protein interactions in complex mixtures. Cross-linking MS has become a much-appreciated and routinely applied tool, especially in structural biology. Therefore, it is timely that the community commits to the development of methodological and reporting standards. This white paper builds on an open process comprising a number of events at community conferences since 2015 and identifies aspects of Cross-linking MS for which guidelines should be developed as part of a Cross-linking MS standards initiative.


Subject(s)
Cross-Linking Reagents/chemistry , Mass Spectrometry/methods , Proteins/ultrastructure , Proteomics/methods , Guidelines as Topic , Humans , International Cooperation , Mass Spectrometry/instrumentation , Mass Spectrometry/standards , Protein Conformation , Protein Interaction Mapping/methods , Proteomics/instrumentation , Proteomics/standards , Reproducibility of Results
16.
Mol Cell Proteomics ; 19(6): 1005-1016, 2020 06.
Article in English | MEDLINE | ID: mdl-32284353

ABSTRACT

Posttranslational modifications play a critical and diverse role in regulating cellular activities. Despite their fundamentally important role in cellular function, there has been no report to date of an effective generalized approach to the targeting, extraction, and characterization of the critical c-terminal regions of natively prenylated proteins. Various chemical modification and metabolic labeling strategies in cell culture have been reported. However, their applicability is limited to cell culture systems and does not allow for analysis of tissue samples. The chemical characteristics (hydrophobicity, low abundance, highly basic charge) of many of the c-terminal regions of prenylated proteins have impaired the use of standard proteomic workflows. In this context, we sought a direct approach to the problem in order to examine these proteins in tissue without the use of labeling. Here we demonstrate that prenylated proteins can be captured on chromatographic resins functionalized with mixed disulfide functions. Protease treatment of resin-bound proteins using chymotryptic digestion revealed peptides from many known prenylated proteins. Exposure of the protease-treated resin to reducing agents and hydro organic mixtures released c-terminal peptides with intact prenyl groups along with other enzymatic modifications expected in this protein family. Database and search parameters were selected to allow for c-terminal modifications unique to these molecules such as CAAX box processing and c-terminal methylation. In summary, we present a direct approach to enrich and obtain information at a molecular level of detail about prenylation of proteins from tissue and cell extracts using high-performance LC-MS without the need for metabolic labeling and derivatization.


Subject(s)
Chromatography, Liquid/methods , Peptides/analysis , Proteins/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Brain/metabolism , Databases, Protein , Mice , Peptide Hydrolases/chemistry , Peptides/chemistry , Protein Prenylation , Proteins/chemistry , Sepharose/analogs & derivatives , Sepharose/chemistry
17.
Mol Omics ; 16(2): 147-155, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32065175

ABSTRACT

Intact glycopeptide analysis is becoming more common with developments in mass spectrometry instrumentation and fragmentation approaches. In particular, collision-based fragmentation approaches such as higher energy collisional dissociation (HCD) and radical-driven fragmentation approaches such as electron transfer dissociation (ETD) provide complementary information, but bioinformatic strategies to utilize this combined information are currently lacking. In this work we adapted a software tool, MS-Filter, to search HCD peak list files for predicted Y ions based on matched EThcD results to propose additional glycopeptide assignments. The strategy proved to be extremely powerful for O-glycopeptide data, and also of benefit for N-linked data, where it allowed rescue of low confidence results from database searching.


Subject(s)
Computational Biology/methods , Glycopeptides/urine , Databases, Protein , Humans , Mass Spectrometry , Software
18.
Regen Ther ; 15: 226-235, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33426223

ABSTRACT

BACKGROUND: Autologous blood products, such as platelet-rich plasma (PRP) are commercial products broadly used to accelerate healing of tissues after injuries. However, their content is not standardized and significantly varies in composition, which may lead to differences in clinical efficacy. Also, the underlying molecular mechanisms for therapeutic effects are not well understood. PURPOSE: A proteomic study was performed to compare the composition of low leukocyte PRP, platelet poor plasma (PPP), and blood plasma. Pathway analysis of the proteomic data was performed to evaluate differences between plasma formulations at the molecular level. Low abundance regulatory proteins in plasma were identified and quantified as well as cellular pathways regulated by those proteins. METHODS: Quantitative proteomic analysis, using multiplexed isotopically labeled tags (TMT labeling) and label-free tandem mass spectrometry, was performed on plasma, low leukocyte PRP, and PPP. Plasma formulations were derived from two blood donors (one donor per experiment). Pathway analysis of the proteomic data identified the major differences between formulations. RESULTS: Nearly 600 proteins were detected in three types of blood plasma formulations in two experiments. Identified proteins showed more than 50% overlap between plasma formulations. Detected proteins represented more than 100 canonical pathways, as was identified by pathway analysis. The major pathways and regulatory molecules were linked to inflammation. CONCLUSION: Three types of plasma formulations were compared in two proteomic experiments. The most represented pathways, such as Acute Phase Response, Coagulation, or System of the Complement, had many proteins in common in both experiments. In both experiments plasma sample sets had the same direction of biochemical pathway changes: up- or down-regulation. The most represented biochemical pathways are linked to inflammation.

19.
RNA Biol ; 16(10): 1346-1354, 2019 10.
Article in English | MEDLINE | ID: mdl-31213125

ABSTRACT

Structural models of large and dynamic molecular complexes are appearing in increasing numbers, in large part because of recent technical advances in cryo-electron microscopy. However, the inherent complexity of such biological assemblies comprising dozens of moving parts often limits the resolution of structural models and leaves the puzzle as to how each functional configuration transitions to the next. Orthogonal biochemical information is crucial to understanding the molecular interactions that drive those rearrangements. We present a two-step method for chemical probing detected by tandem mass-spectrometry to globally assess the reactivity of lysine residues within purified macromolecular complexes. Because lysine side chains often balance the negative charge of RNA in ribonucleoprotein complexes, the method is especially useful for detecting changes in protein-RNA interactions. By probing the E. coli 30S ribosome subunit, we established that the reactivity pattern of lysine residues quantitatively reflects structure models derived from X-ray crystallography. We also used the strategy to assess differences in three conformations of purified human spliceosomes in the context of recent cryo-electron microscopy models. Our results demonstrate that the probing method yields powerful biochemical information that helps contextualize architectural rearrangements of intermediate resolution structures of macromolecular complexes, often solved in multiple conformations.


Subject(s)
Lysine/chemistry , Macromolecular Substances/chemistry , Models, Molecular , Molecular Conformation , Acetylation , Crystallography, X-Ray , Humans , Peptides/chemistry , RNA/chemistry , Ribosome Subunits, Small, Bacterial/metabolism , Spliceosomes/metabolism , Tandem Mass Spectrometry
20.
J Proteome Res ; 18(6): 2686-2692, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31081335

ABSTRACT

Mass-spectrometry-based proteomics enables the high-throughput identification and quantification of proteins, including sequence variants and post-translational modifications (PTMs) in biological samples. However, most workflows require that such variations be included in the search space used to analyze the data, and doing so remains challenging with most analysis tools. In order to facilitate the search for known sequence variants and PTMs, the Proteomics Standards Initiative (PSI) has designed and implemented the PSI extended FASTA format (PEFF). PEFF is based on the very popular FASTA format but adds a uniform mechanism for encoding substantially more metadata about the sequence collection as well as individual entries, including support for encoding known sequence variants, PTMs, and proteoforms. The format is very nearly backward compatible, and as such, existing FASTA parsers will require little or no changes to be able to read PEFF files as FASTA files, although without supporting any of the extra capabilities of PEFF. PEFF is defined by a full specification document, controlled vocabulary terms, a set of example files, software libraries, and a file validator. Popular software and resources are starting to support PEFF, including the sequence search engine Comet and the knowledge bases neXtProt and UniProtKB. Widespread implementation of PEFF is expected to further enable proteogenomics and top-down proteomics applications by providing a standardized mechanism for encoding protein sequences and their known variations. All the related documentation, including the detailed file format specification and example files, are available at http://www.psidev.info/peff .


Subject(s)
Proteomics/standards , Humans , Information Storage and Retrieval , Mass Spectrometry , Software
SELECTION OF CITATIONS
SEARCH DETAIL