Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 07 12.
Article in English | MEDLINE | ID: mdl-35818828

ABSTRACT

The lobe-finned fish, lungfish (Dipnoi, Sarcoptergii), have persisted for ~400 million years from the Devonian Period to present day. The evolution of their dermal skull and dentition is relatively well understood, but this is not the case for the central nervous system. While the brain has poor preservation potential and is not currently known in any fossil lungfish, substantial indirect information about it and associated structures (e.g. labyrinths) can be obtained from the cranial endocast. However, before the recent development of X-ray tomography as a palaeontological tool, these endocasts could not be studied non-destructively, and few detailed studies were undertaken. Here, we describe and illustrate the endocasts of six Palaeozoic lungfish from tomographic scans. We combine these with six previously described digital lungfish endocasts (4 fossil and 2 recent taxa) into a 12-taxon dataset for multivariate morphometric analysis using 17 variables. We find that the olfactory region is more highly plastic than the hindbrain, and undergoes significant elongation in several taxa. Further, while the semicircular canals covary as an integrated module, the utriculus and sacculus vary independently of each other. Functional interpretation suggests that olfaction has remained a dominant sense throughout lungfish evolution, and changes in the labyrinth may potentially reflect a change from nektonic to near-shore environmental niches. Phylogenetic implications show that endocranial form fails to support monophyly of the 'chirodipterids'. Those with elongated crania similarly fail to form a distinct clade, suggesting these two paraphyletic groups have converged towards either head elongation or truncation driven by non-phylogenetic constraints.


Subject(s)
Biological Evolution , Fossils , Animals , Brain/diagnostic imaging , Fishes , Paleontology , Skull/anatomy & histology , Skull/diagnostic imaging
2.
PeerJ ; 6: e5148, 2018.
Article in English | MEDLINE | ID: mdl-30002977

ABSTRACT

One of the first endocasts of a dipnoan (lungfish) to be realised was that of the Upper Devonian taxon Chirodipterus australis. This early interpretation was based on observations of the shape of the cranial cavity alone and was not based on a natural cast or 'steinkern' nor from serial sectioning. The validity of this reconstruction is therefore questionable and continued reference to and use of this interpretation in analyses of sarcopterygian cranial evolution runs the risk of propagation of error. Here we present a new detailed anatomical description of the endocast of 'Chirodipterus' australis from the Upper Devonian Gogo Formation of Western Australia, known for exceptional 3D preservation which enables fine-scale scrutiny of endocranial anatomy. We show that it exhibits a suite of characters more typical of Lower and Middle Devonian dipnoan taxa. Notably, the small utricular recess is unexpected for a taxon of this age, whereas the ventral expansion of the telencephalon is more typical of more derived taxa. The presence of such 'primitive' characters in 'C.' australis supports its relatively basal position as demonstrated in the most recent phylogenies of Devonian Dipnoi.

3.
PeerJ ; 4: e2539, 2016.
Article in English | MEDLINE | ID: mdl-27781157

ABSTRACT

The first virtual cranial endocast of a lungfish from the Early Devonian, Dipnorhynchus sussmilchi, is described. Dipnorhynchus, only the fourth Devonian lungfish for which a near complete cranial endocast is known, is a key taxon for clarifying primitive character states within the group. A ventrally-expanded telencephalic cavity is present in the endocast of Dipnorhynchus demonstrating that this is the primitive state for "true" Dipnoi. Dipnorhynchus also possesses a utricular recess differentiated from the sacculolagenar pouch like that seen in stratigraphically younger lungfish (Dipterus, Chirodipterus, Rhinodipterus), but absent from the dipnomorph Youngolepis. We do not find separate pineal and para-pineal canals in contrast to a reconstruction from previous authors. We conduct the first phylogenetic analysis of Dipnoi based purely on endocast characters, which supports a basal placement of Dipnorhynchus within the dipnoan stem group, in agreement with recent analyses. Our analysis demonstrates the value of endocast characters for inferring phylogenetic relationships.

SELECTION OF CITATIONS
SEARCH DETAIL
...