Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 43(3): 1018-1032, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37871100

ABSTRACT

Automatic detection of retinal vasculature in optical coherence tomography angiography (OCTA) images faces several challenges such as the closely located capillaries, vessel discontinuity and high noise level. This paper introduces a new distinctive phase interdependency model to address these problems for delineating centerline patterns of the vascular network. We capture the inherent property of vascular centerlines by obtaining the inter-scale dependency information that exists between neighboring symmetrical wavelets in complex Poisson domain. In particular, the proposed phase interdependency model identifies vascular centerlines as the distinctive features that have high magnitudes over adjacent symmetrical coefficients whereas the coefficients caused by background noises are decayed rapidly along adjacent wavelet scales. The potential relationships between the neighboring Poisson coefficients are established based on the coherency of distinctive symmetrical wavelets. The proposed phase model is assessed on the OCTA-500 database (300 OCTA images + 200 OCT images), ROSE-1-SVC dataset (9 OCTA images), ROSE-1 (SVC+ DVC) dataset (9 OCTA images), and ROSE-2 dataset (22 OCTA images). The experiments on the clinically relevant OCTA images validate the effectiveness of the proposed method in achieving high-quality results. Our method produces average FScore of 0.822, 0.782, and 0.779 on ROSE-1-SVC, ROSE-1 (SVC+ DVC), and ROSE-2 datasets, respectively, and the FScore of 0.910 and 0.862 on OCTA_6mm and OCT_3mm datasets (OCTA-500 database), respectively, demonstrating its superior performance over the state-of-the-art benchmark methods.


Subject(s)
Angiography , Retinal Vessels , Retinal Vessels/diagnostic imaging , Capillaries , Tomography, Optical Coherence/methods , Fluorescein Angiography/methods
2.
IEEE Trans Med Imaging ; 42(3): 880-893, 2023 03.
Article in English | MEDLINE | ID: mdl-36331638

ABSTRACT

Robust detection of retinal vessels remains an unsolved research problem, particularly in handling the intrinsic real-world challenges of highly imbalanced contrast between thick vessels and thin ones, inhomogeneous background regions, uneven illumination, and complex geometries of crossing/bifurcations. This paper presents a new separable paravector orientation tensor that addresses these difficulties by characterizing the enhancement of retinal vessels to be dependent on a nonlinear scale representation, invariant to changes in contrast and lighting, responsive for symmetric patterns, and fitted with elliptical cross-sections. The proposed method is built on projecting vessels as a 3D paravector valued function rotated in an alpha quarter domain, providing geometrical, structural, symmetric, and energetic features. We introduce an innovative symmetrical inhibitory scheme that incorporates paravector features for producing a set of directional contrast-independent elongated-like patterns reconstructing vessel tree in orientation tensors. By fitting constraint elliptical volumes via eigensystem analysis, the final vessel tree is produced with a strong and uniform response preserving various vessel features. The validation of proposed method on clinically relevant retinal images with high-quality results, shows its excellent performance compared to the state-of-the-art benchmarks and the second human observers.


Subject(s)
Lighting , Retinal Vessels , Humans , Retinal Vessels/diagnostic imaging , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL