Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Toxicology ; 505: 153822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685447

ABSTRACT

Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16 mg/kg/day(d) MMI or 25 and 50 mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.


Subject(s)
Hippocampus , Methimazole , Animals , Female , Hippocampus/drug effects , Hippocampus/metabolism , Male , Methimazole/toxicity , Pregnancy , Rats , Iodide Peroxidase/genetics , Transcriptome/drug effects , Antithyroid Agents/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Gene Expression Regulation, Developmental/drug effects , Enzyme Inhibitors/toxicity , Enzyme Inhibitors/pharmacology
3.
Toxicol In Vitro ; 97: 105808, 2024 May.
Article in English | MEDLINE | ID: mdl-38484921

ABSTRACT

The use of millimeter waves (MMW) will exponentially grow in the coming years due to their future utilization in 5G/6G networks. The question of possible biological effects at these frequencies has been raised. In this present study, we aimed to investigate gene expression changes under exposure to MMW using the Bulk RNA Barcoding and sequencing (BRB-seq) technology. To address this issue, three exposure scenarios were performed aiming at: i) comparing the cellular response of two primary culture of keratinocytes (HEK and NHEK) and one keratinocyte derivate cell line (HaCaT) exposed to MMW; ii) exploring the incident power density dose-effect on gene expression in HaCaT cell line; and, iii) studying the exposure duration at the new ICNIRP exposure limit for the general population. With the exception of heat effect induced by high power MMW (over 10 mW/cm2), those exposure scenarios have not enabled us to demonstrate important gene expression changes in the different cell populations studied. Very few differentially genes were observed between MMW exposed samples and heat shock control, and most of them were significantly associated with heat shock response that may reflect small differences in the heat generation. Together these results show that acute exposure to MMW has no effects on the transcriptional landscape of human keratinocyte models under athermal conditions.


Subject(s)
Keratinocytes , Humans , Keratinocytes/metabolism , Cell Line
4.
Andrology ; 12(2): 396-409, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37354024

ABSTRACT

BACKGROUND: An important issue for young men affected by testicular germ cell tumor (TGCT) is how TGCT and its treatment will affect, transiently or permanently, their future reproductive health. Previous studies have reported that xenobiotics can induce changes on human sperm epigenome and have the potential to promote epigenetic alterations in the offspring. OBJECTIVES: Here, we report the first longitudinal DNA methylation profiling of frozen sperm from a TGCT patient before and up to 2 years after a bleomycin, etoposide, and cisplatin (BEP) chemotherapy. MATERIALS AND METHODS: A TGCT was diagnosed in a 30-year-old patient. A cryopreservation of spermatozoa was proposed before adjuvant BEP treatment. Semen samples were collected before and after chemotherapy at 6, 9, 12, and 24 months. The DNA methylation status was determined by RRBS to detect DNA differentially methylated regions (DMRs). RESULTS: The analysis revealed that among the 74 DMRs showing modified methylation status 6 months after therapy, 17 remained altered 24 months after treatment. We next associated DMRs with differentially methylated genes (DMGs), which were subsequently intersected with loci known to be important or expressed during early development. DISCUSSION AND CONCLUSION: The consequences of the cancer treatment on the sperm epigenome during the recovery periods are topical issues of increasing significance as epigenetic modifications to the paternal genome may have deleterious effects on the offspring. The altered methylated status of these DMGs important for early development might modify their expression pattern and thus affect their function during key stages of embryogenesis, potentially leading to developmental disorders or miscarriages.


Subject(s)
DNA Methylation , Neoplasms, Germ Cell and Embryonal , Semen , Testicular Neoplasms , Humans , Male , Adult , Longitudinal Studies , Spermatozoa/metabolism
5.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38078651

ABSTRACT

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Subject(s)
Anoikis , Sertoli Cells , Animals , Male , Mice , Anoikis/genetics , Cell Death/genetics , Sertoli Cells/metabolism , Testis/metabolism
6.
Development ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063846

ABSTRACT

To investigate the role of the nuclear receptor NR5A1 in testis after sex determination, we have analyzed mice lacking NR5A1 in Sertoli cells (SC) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impairs the expression of genes characteristic of the SC identity (e.g., Sox9, Amh), causes SC death from E14.5 through a Trp53-independent mechanism related to anoikis, and induces disorganization of the testis cords. Together, these effects cause germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SC change their molecular identity: some acquire a "pre-granulosa-like" identity, while other revert to a "supporting progenitor-like" cell identity, most of them being "intersex" because they express both testicular and ovarian genes. Fetal Leydig cells (LC) do not display significant changes, indicating that SC are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LC were absent from the postnatal testes. In addition, adult mutant males display persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which can be explained by the loss of AMH and testosterone synthesis due to SC failure.

7.
Cell ; 186(26): 5910-5924.e17, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38070509

ABSTRACT

The evolution and development of the head have long captivated researchers due to the crucial role of the head as the gateway for sensory stimuli and the intricate structural complexity of the head. Although significant progress has been made in understanding head development in various vertebrate species, our knowledge of early human head ontogeny remains limited. Here, we used advanced whole-mount immunostaining and 3D imaging techniques to generate a comprehensive 3D cellular atlas of human head embryogenesis. We present detailed developmental series of diverse head tissues and cell types, including muscles, vasculature, cartilage, peripheral nerves, and exocrine glands. These datasets, accessible through a dedicated web interface, provide insights into human embryogenesis. We offer perspectives on the branching morphogenesis of human exocrine glands and unknown features of the development of neurovascular and skeletomuscular structures. These insights into human embryology have important implications for understanding craniofacial defects and neurological disorders and advancing diagnostic and therapeutic strategies.


Subject(s)
Embryo, Mammalian , Head , Humans , Morphogenesis , Head/growth & development
8.
Science ; 382(6670): 600-606, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37917714

ABSTRACT

Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.


Subject(s)
Ovary , Sex Determination Processes , WT1 Proteins , Animals , Female , Male , Mice , Ovary/growth & development , Sex Determination Processes/genetics , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , Testis/growth & development , WT1 Proteins/genetics , WT1 Proteins/metabolism , Protein Isoforms
9.
Cell Death Dis ; 14(9): 622, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37736770

ABSTRACT

Clear cell Renal Cell Carcinoma (ccRCC) is one of the most prevalent kidney cancers, which is often asymptomatic and thus discovered at a metastatic state (mRCC). mRCC are highly heterogeneous tumors composed of subclonal populations that lead to poor treatment response rate. Several recent works explored the potential of ccRCC tumoroids culture derived from patients. However, these models were produced following a scaffold-based method using collagen I or Matrigel that exhibit lot variability and whose complexity could induce treatment response modifications and phenotypic alterations. Following the observation that ccRCC tumoroids can create their own niche by secreting extracellular matrix components, we developed the first scaffold-free tumoroid model of ccRCC tumors. Tumoroids from mice as well as from human tumors were generated with high success rate (≥90%) using a magnetic suspension method and standard culture media. Immunofluorescence analysis revealed their self-organization capacities to maintain multiple tumor-resident cell types, including endothelial progenitor cells. Transcriptomic analysis showed the reproducibility of the method highlighting that the majority of gene expression patterns was conserved in tumoroids compared to their matching tumor tissue. Moreover, this model enables to evaluate drug effects and invasiveness of renal cancer cells in a 3D context, providing a robust preclinical tool for drug screening and biomarker assessment in line with alternative ex vivo methods like tumor tissue slice culture or in vivo xenograft models.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Animals , Mice , Carcinoma, Renal Cell/drug therapy , Reproducibility of Results , Kidney Neoplasms/drug therapy , Kidney
10.
iScience ; 26(10): 107890, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766969

ABSTRACT

The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).

11.
Toxicol Sci ; 195(2): 169-183, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37505509

ABSTRACT

Valproic acid (VPA) has long been the most widely used antiepileptic drug (AED) for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. However, long-term VPA treatment has several adverse effects on the male reproductive system notably on endocrine functions and/or spermatic parameters. In utero exposure of the fetus to VPA is well known to be associated with a higher risk of several congenital malformations including those of male reproductive organs. Subsequent generations of AEDs, such as carbamazepine (CARB) and lamotrigine (LAM), are considered safer and are currently recommended for women of child-bearing age with epilepsy. Because anomalies of the male genital tract mostly result from endocrine imbalance during fetal life, we hypothesized that AEDs could directly impair testis differentiation. We thus aimed at identifying and characterizing the effects of VPA, CARB, and LAM on the differentiation and function of the different testicular cell types, and at understanding the mechanisms underlying these effects. By using ex vivo culture of first-trimester human fetal testes, we show that VPA induces multiple endocrine disruptive effects, compared with the milder ones caused by CARB and LAM. AED also subtly altered the germ cell lineage in distinct manners. Transcriptomic analysis of VPA-induced alterations highlighted a very broad range of effects on the fetal testis. Overall, our results show that AEDs can behave as endocrine disruptors for the human fetal testis ex vivo. This is consistent with, and likely underlies, the VPA-induced male genital tract masculinization abnormalities observed in patients.


Subject(s)
Endocrine Disruptors , Epilepsy , Humans , Male , Female , Anticonvulsants/toxicity , Anticonvulsants/therapeutic use , Testis , Endocrine Disruptors/metabolism , Valproic Acid/toxicity , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Fetus
12.
FASEB J ; 37(8): e23073, 2023 08.
Article in English | MEDLINE | ID: mdl-37402125

ABSTRACT

In female mammals, the oviduct and uterus are essential sites for female and male gamete transport, fertilization, implantation, and maintenance of a successful pregnancy. To delineate the reproductive function of Mothers against decapentaplegic homolog 4 (Smad4), we specifically inactivated Smad4 in ovarian granulosa cells and, oviduct and uterine mesenchymal cells using the Amhr2-cre mouse line. Deletion of exon 8 of Smad4 results in the production of an MH2-truncated SMAD4 protein. These mutant mice are infertile due to the development of oviductal diverticula and defects during the implantation process. The ovaries are fully functional as demonstrated in an ovary transfer experiment. The development of oviductal diverticula occurs shortly after puberty and is dependent on estradiol. The diverticula interfere with sperm migration and embryo transit to the uterus, reducing the number of implantation sites. Analysis of the uterus shows that, even if implantation occurs, decidualization and vascularization are defective resulting in embryo resorption as early as the seventh day of pregnancy. Thus, Smad4 plays an important function in female reproduction by controlling the structural and functional integrity of the oviduct and uterus.


Subject(s)
Estradiol , Smad4 Protein , Animals , Female , Humans , Male , Mice , Pregnancy , Embryo Implantation , Estradiol/metabolism , Mammals/metabolism , Oviducts/metabolism , Semen/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Uterus/metabolism
13.
Cell Rep ; 42(6): 112618, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294633

ABSTRACT

Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.


Subject(s)
Hematopoietic Stem Cells , Lymphopoiesis , Adult , Humans , Aged , Cell Differentiation , Cell Lineage , Hematopoiesis
14.
Front Toxicol ; 5: 1189303, 2023.
Article in English | MEDLINE | ID: mdl-37265663

ABSTRACT

Current test strategies to identify thyroid hormone (TH) system disruptors are inadequate for conducting robust chemical risk assessment required for regulation. The tests rely heavily on histopathological changes in rodent thyroid glands or measuring changes in systemic TH levels, but they lack specific new approach methodologies (NAMs) that can adequately detect TH-mediated effects. Such alternative test methods are needed to infer a causal relationship between molecular initiating events and adverse outcomes such as perturbed brain development. Although some NAMs that are relevant for TH system disruption are available-and are currently in the process of regulatory validation-there is still a need to develop more extensive alternative test batteries to cover the range of potential key events along the causal pathway between initial chemical disruption and adverse outcomes in humans. This project, funded under the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims to facilitate the development of NAMs that are specific for TH system disruption by characterizing in vivo mechanisms of action that can be targeted by in embryo/in vitro/in silico/in chemico testing strategies. We will develop and improve human-relevant in vitro test systems to capture effects on important areas of the TH system. Furthermore, we will elaborate on important species differences in TH system disruption by incorporating non-mammalian vertebrate test species alongside classical laboratory rat species and human-derived in vitro assays.

15.
Front Endocrinol (Lausanne) ; 14: 1112834, 2023.
Article in English | MEDLINE | ID: mdl-37008933

ABSTRACT

Introduction: Suitable cryopreservation procedures of pre-pubertal testicular tissue associated with efficient culture conditions are crucial in the fields of fertility preservation and restoration. In vitro spermatogenesis remains a challenging technical procedure to undergo a complete spermatogenesis.The number of haploid cells and more specifically the spermatic yield produced in vitro in mice is still extremely low compared to age-matched in vivo controls and this procedure has never yet been successfully transferred to humans. Methods: To evaluate the impact of in vitro culture and freezing procedure, pre-pubertal testicular mice testes were directly cultured until day 4 (D4), D16 and D30 or cryopreserved by controlled slow freezing then cultured until D30. Testes composed of a panel of 6.5 dpp (days postpartum), 10.5 dpp, 22.5 dpp, and 36.5 dpp mice were used as in vivo controls. Testicular tissues were assessed by histological (HES) and immunofluorescence (stimulated by retinoic acid gene 8, STRA8) analyses. Moreover, a detailed transcriptome evaluation study has been carried out to study the gene expression patterns throughout the first in vitro spermatogenic wave. Results: Transcriptomic analyses reveal that cultured tissues expression profiles are almost comparable between D16 and D30; highlighting an abnormal kinetic throughout the second half of the first spermatogenesis during in vitro cultures. In addition, testicular explants have shown dysregulation of their transcriptomic profile compared to controls with genes related to inflammation response, insulin-like growth factor and genes involved in steroidogenesis. Discussion: The present work first shows that cryopreservation had very little impact on gene expression in testicular tissue, either directly after thawing or after 30 days in culture. Transcriptomic analysis of testis tissue samples is highly informative due to the large number of expressed genes and identified isoforms. This study provides a very valuable basis for future studies concerning in vitro spermatogenesis in mice.


Subject(s)
Spermatogenesis , Testis , Male , Female , Animals , Humans , Mice , Testis/metabolism , Spermatogenesis/genetics , Cryopreservation/methods , High-Throughput Nucleotide Sequencing , Gene Expression
16.
Eur Urol ; 83(5): 441-451, 2023 05.
Article in English | MEDLINE | ID: mdl-36801089

ABSTRACT

BACKGROUND: Intratumor heterogeneity (ITH) is a key feature in clear cell renal cell carcinomas (ccRCCs) that impacts outcomes such as aggressiveness, response to treatments, or recurrence. In particular, it may explain tumor relapse after surgery in clinically low-risk patients who did not benefit from adjuvant therapy. Recently, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to unravel expression ITH (eITH) and might enable better assessment of clinical outcomes in ccRCC. OBJECTIVE: To explore eITH in ccRCC with a focus on malignant cells (MCs) and assess its relevance to improve prognosis for low-risk patients. DESIGN, SETTING, AND PARTICIPANTS: We performed scRNA-seq on tumor samples from five untreated ccRCC patients ranging from pT1a to pT3b. Data were complemented with a published dataset composed of pairs of matched normal and ccRCC samples. INTERVENTION: Radical or partial nephrectomy on untreated ccRCC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Viability and cell type proportions were determined by flow cytometry. Following scRNA-seq, a functional analysis was performed and tumor progression trajectories were inferred. A deconvolution approach was applied on an external cohort, and Kaplan-Meier survival curves were estimated with respect to the prevalence of malignant clusters. RESULTS AND LIMITATIONS: We analyzed 54 812 cells and identified 35 cell subpopulations. The eITH analysis revealed that each tumor contained various degrees of clonal diversity. The transcriptomic signatures of MCs in one particularly heterogeneous sample were used to design a deconvolution-based strategy that allowed the risk stratification of 310 low-risk ccRCC patients. CONCLUSIONS: We described eITH in ccRCCs, and used this information to establish significant cell population-based prognostic signatures and better discriminate ccRCC patients. This approach has the potential to improve the stratification of clinically low-risk patients and their therapeutic management. PATIENT SUMMARY: We sequenced the RNA content of individual cell subpopulations composed of clear cell renal cell carcinomas and identified specific malignant cells the genetic information of which can be used to predict tumor progression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Prognosis , Neoplasm Staging , Neoplasm Recurrence, Local/pathology , Biomarkers , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis
17.
Arch Toxicol ; 97(3): 849-863, 2023 03.
Article in English | MEDLINE | ID: mdl-36653537

ABSTRACT

Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.


Subject(s)
Endocrine Disruptors , Potassium Channels, Voltage-Gated , Humans , Pregnancy , Mice , Female , Rats , Animals , Diethylstilbestrol/toxicity , Ovary , Endocrine Disruptors/toxicity , Ketoconazole , Reproduction , Potassium Channels, Voltage-Gated/pharmacology
18.
Cell Biol Toxicol ; 39(2): 371-390, 2023 04.
Article in English | MEDLINE | ID: mdl-35412187

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Ethanol/toxicity , Zebrafish , Benzo(a)pyrene/toxicity , Larva , Transcriptome , Mitochondria , Heme
20.
Nucleic Acids Res ; 50(20): 11470-11491, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36259644

ABSTRACT

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.


Subject(s)
Endoribonucleases , Germ Cell Ribonucleoprotein Granules , Spermatogenesis , Transcriptome , Animals , Male , Mice , Germ Cells/metabolism , RNA, Small Interfering/genetics , Spermatids/metabolism , Spermatogenesis/genetics , Endoribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...