Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202402050, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38488804

ABSTRACT

Germacranolides, secondary metabolites produced by plants, have garnered academic and industrial interest due to their diverse and complex topology as well as a wide array of pharmacological activities. Molephantin, a highly oxygenated germacranolide isolated from medicinal plants, Elephantopus mollis and Elephantopus tomentosus, has exhibited antitumor, inflammatory, and leishmanicidal activities. Its chemical structure is based on a highly strained ten-membered macrocyclic backbone with an (E,Z)-dienone moiety, which is fused with an α-methylene-γ-butyrolactone and adorned with four successive stereogenic centers. Herein, we report the first synthesis of molephantin in 12 steps starting from readily available building blocks. The synthesis features the highly diastereoselective intermolecular Barbier allylation of the ß,γ-unsaturated aldehyde with optically active 3-bromomethyl-5H-furan-2-one intermediate and ensuing Nozaki-Hiyama-Kishi (NHK) macrocyclization for the construction of the highly oxygenated ten-membered macrocyclic framework. This synthetic route enabled access to another germacranolide congener, tomenphantopin F. Furthermore, cycloisomerization of molephantin into 2-deethoxy-2ß-hydroxyphantomolin could be facilitated by irradiation with ultraviolet A light (λmax=370 nm), which opened a versatile and concise access to the related furanogermacranolides such as EM-2, phantomolin, 2-O-demethyltomenphantopin C, and tomenphantopin C.


Subject(s)
Oxygen , Oxygen/chemistry , Asteraceae/chemistry , Stereoisomerism , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/chemical synthesis , Furans/chemistry , Furans/chemical synthesis , Molecular Structure
2.
Inorg Chem ; 60(7): 4569-4577, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33733776

ABSTRACT

This study describes the first use of a bis(phosphoranyl)methanido aluminum hydride, [ClC(PPh2NMes)2AlH2] (2, Mes = Me3C6H2), for the catalytic hydroboration of CO2. Complex 2 was synthesized by the reaction of a lithium carbenoid [Li(Cl)C(PPh2NMes)2] with 2 equiv of AlH3·NEtMe2 in toluene at -78 °C. 2 (10 mol %) was able to catalyze the reduction of CO2 with HBpin in C6D6 at 110 °C for 2 days to afford a mixture of methoxyborane [MeOBpin] (3a; yield: 78%, TOF: 0.16 h-1) and bis(boryl)oxide [pinBOBpin] (3b). When more potent [BH3·SMe2] was used instead of HBpin, the catalytic reaction was extremely pure, resulting in the formation of trimethyl borate [B(OMe)3] (3e) [catalytic loading: 1 mol % (10 mol %); reaction time: 60 min (5 min); yield: 97.6% (>99%); TOF: 292.8 h-1 (356.4 h-1)] and B2O3 (3f). Mechanistic studies show that the Al-H bond in complex 2 activated CO2 to form [ClC(PPh2NMes)2Al(H){OC(O)H}] (4), which was subsequently reacted with BH3·SMe2 to form 3e and 3f, along with the regeneration of complex 2. Complex 2 also shows good catalytic activity toward the hydroboration of carbonyl, nitrile, and alkyne derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...