Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38886063

ABSTRACT

Persistent activity in excitatory pyramidal cells (PYRs) is a putative mechanism for maintaining memory traces during working memory. We have recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon that could serve as a substrate for persistent activity in PYRs through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modeling and mathematical analysis showed that the slowly inactivating potassium current KV1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the KV1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a coexisting stable fixed point corresponding to a nonspiking quiescent state. As KV1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation (HB) and then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without KV1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical HB, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable, KV1 inactivation.


Subject(s)
Interneurons , Models, Neurological , Parvalbumins , Parvalbumins/metabolism , Interneurons/physiology , Interneurons/metabolism , Animals , Action Potentials/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , Neural Inhibition/physiology , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Shaker Superfamily of Potassium Channels/metabolism , Entorhinal Cortex/physiology , Entorhinal Cortex/metabolism , Male
2.
Proc Natl Acad Sci U S A ; 121(17): e2306382121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640347

ABSTRACT

Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.


Subject(s)
Hippocampus , Interneurons , Mice , Animals , Interneurons/physiology , Hippocampus/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Somatostatin/genetics , Somatostatin/metabolism
3.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496528

ABSTRACT

Persistent activity in principal cells is a putative mechanism for maintaining memory traces during working memory. We recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon which could serve as a substrate for persistent activity in principal cells through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modelling and mathematical analysis showed that the slowly inactivating potassium current Kv1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the Kv1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a co-existing stable fixed point corresponding to a non-spiking quiescent state. As Kv1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without Kv1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical Hopf bifurcation, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable.

4.
bioRxiv ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37162922

ABSTRACT

Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single cell transcriptome analyses have provided a comprehensive Sst-IN subtype census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were both necessary and sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare (OLM) INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.

5.
Neuron ; 111(8): 1282-1300.e8, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36787750

ABSTRACT

Cannabidiol (CBD), a non-euphoric component of cannabis, reduces seizures in multiple forms of pediatric epilepsies, but the mechanism(s) of anti-seizure action remain unclear. In one leading model, CBD acts at glutamatergic axon terminals, blocking the pro-excitatory actions of an endogenous membrane phospholipid, lysophosphatidylinositol (LPI), at the G-protein-coupled receptor GPR55. However, the impact of LPI-GPR55 signaling at inhibitory synapses and in epileptogenesis remains underexplored. We found that LPI transiently increased hippocampal CA3-CA1 excitatory presynaptic release probability and evoked synaptic strength in WT mice, while attenuating inhibitory postsynaptic strength by decreasing GABAARγ2 and gephyrin puncta. LPI effects at excitatory and inhibitory synapses were eliminated by CBD pre-treatment and absent after GPR55 deletion. Acute pentylenetrazole-induced seizures elevated GPR55 and LPI levels, and chronic lithium-pilocarpine-induced epileptogenesis potentiated LPI's pro-excitatory effects. We propose that CBD exerts potential anti-seizure effects by blocking LPI's synaptic effects and dampening hyperexcitability.


Subject(s)
Cannabidiol , Mice , Animals , Cannabidiol/pharmacology , Hippocampus/physiology , Receptors, G-Protein-Coupled/metabolism , Synapses/physiology , Signal Transduction , Receptors, Cannabinoid/metabolism
6.
Neuron ; 111(8): 1264-1281.e5, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36787751

ABSTRACT

Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical properties; these operations are generally constrained by the brevity of synaptic events. Here, we report that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-INs) can be persistently interrupted for several hundred milliseconds following brief GABAAR-mediated inhibition in vitro and in vivo. A single presynaptic neuron could interrupt PV-IN firing, occasionally with a single action potential (AP), and reliably with AP bursts. Experiments and computational modeling reveal that the persistent interruption of firing maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism. Interrupted PV-INs are strikingly responsive to Schaffer collateral inputs. The persistent interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1 pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief synaptic inhibition owing to the well-tuned interplay between neurotransmitter release and postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.


Subject(s)
Pyramidal Cells , Synaptic Transmission , Synaptic Transmission/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Synaptic Membranes , Interneurons/physiology
7.
EMBO J ; 39(21): e103864, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32893934

ABSTRACT

The fragile X autosomal homolog 1 (Fxr1) is regulated by lithium and has been GWAS-associated with schizophrenia and insomnia. Homeostatic regulation of synaptic strength is essential for the maintenance of brain functions and involves both cell-autonomous and system-level processes such as sleep. We examined the contribution of Fxr1 to cell-autonomous homeostatic synaptic scaling and neuronal responses to sleep loss, using a combination of gene overexpression and Crispr/Cas9-mediated somatic knockouts to modulate gene expression. Our findings indicate that Fxr1 is downregulated during both scaling and sleep deprivation via a glycogen synthase kinase 3 beta (GSK3ß)-dependent mechanism. In both conditions, downregulation of Fxr1 is essential for the homeostatic modulation of surface AMPA receptors and synaptic strength. Preventing the downregulation of Fxr1 during sleep deprivation results in altered EEG signatures. Furthermore, sequencing of neuronal translatomes revealed the contribution of Fxr1 to changes induced by sleep deprivation. These findings uncover a role of Fxr1 as a shared signaling hub between cell-autonomous homeostatic plasticity and system-level responses to sleep loss, with potential implications for neuropsychiatric illnesses and treatments.


Subject(s)
Homeostasis/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sleep/genetics , Sleep/physiology , Animals , Brain/physiology , Disease Models, Animal , Down-Regulation , Gene Expression Regulation , Gene Knockout Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity , Neurons/metabolism , Receptors, AMPA/metabolism , Transcriptome
8.
Synapse ; 74(12): e22178, 2020 12.
Article in English | MEDLINE | ID: mdl-32598500

ABSTRACT

Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF-CA3 synapse. We found that asynchronous release at MF-CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst-evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q-type voltage-gated Ca2+ channels, while the contribution of N-type VGCCs was limited. Overall, our results uncover the determinants of long-lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.


Subject(s)
Action Potentials , CA3 Region, Hippocampal/physiology , Calcium/metabolism , Mossy Fibers, Hippocampal/metabolism , Animals , CA3 Region, Hippocampal/metabolism , Calcium Channels/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mossy Fibers, Hippocampal/physiology
10.
Cereb Cortex ; 30(6): 3667-3685, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32080739

ABSTRACT

Disinhibition is a widespread circuit mechanism for information selection and transfer. In the hippocampus, disinhibition of principal cells is provided by the interneuron-specific interneurons that express the vasoactive intestinal polypeptide (VIP-IS) and innervate selectively inhibitory interneurons. By combining optophysiological experiments with computational models, we determined the impact of synaptic inputs onto the network state-dependent recruitment of VIP-IS cells. We found that VIP-IS cells fire spikes in response to both the Schaffer collateral and the temporoammonic pathway activation. Moreover, by integrating their intrinsic and synaptic properties into computational models, we predicted recruitment of these cells between the rising phase and peak of theta oscillation and during ripples. Two-photon Ca2+-imaging in awake mice supported in part the theoretical predictions, revealing a significant speed modulation of VIP-IS cells and their preferential albeit delayed recruitment during theta-run epochs, with estimated firing at the rising phase and peak of the theta cycle. However, it also uncovered that VIP-IS cells are not activated during ripples. Thus, given the preferential theta-modulated firing of VIP-IS cells in awake hippocampus, we postulate that these cells may be important for information gating during spatial navigation and memory encoding.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/metabolism , Interneurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Computer Simulation , Interneurons/physiology , Memory , Mice , Mice, Transgenic , Neural Inhibition/physiology , Optical Imaging , Patch-Clamp Techniques , Recruitment, Neurophysiological/physiology , Spatial Memory/physiology , Spatial Navigation/physiology , Theta Rhythm , Wakefulness
11.
Cell ; 179(7): 1590-1608.e23, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835034

ABSTRACT

Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.


Subject(s)
Brain/physiology , GTPase-Activating Proteins/genetics , Microscopy, Fluorescence, Multiphoton/methods , Optogenetics/methods , Theta Rhythm , Wakefulness , Action Potentials , Animals , Brain/metabolism , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Female , GTPase-Activating Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Rats , Rats, Sprague-Dawley , Running
12.
Exp Physiol ; 104(4): 463-468, 2019 04.
Article in English | MEDLINE | ID: mdl-30729595

ABSTRACT

NEW FINDINGS: What is the central question of the study? Progesterone is considered a respiratory stimulant drug, but its effect on medullary respiratory neurons are poorly documented. We investigated whether progesterone alters spontaneous activity of neurons in the nucleus of the solitary tract (NTS). What is the main finding and its importance? In NTS neurons, progesterone decreases the action potential firing frequency in response to current injections and the amplitude of excitatory postsynaptic currents. Based on the established neuroprotective effect of progesterone against excitotoxicity resulting from insults, this inhibitory effect is likely to reflect inhibition of ion fluxes. These results are important because they further our understanding of the mechanisms underlying the diversity of respiratory effects of progesterone. ABSTRACT: Progesterone is known to stimulate breathing, but its actions on the respiratory control system have received limited attention. We addressed this issue at the cellular level by testing the hypothesis that progesterone augments excitatory currents at the level of the nucleus tractus solitarii (NTS). Medullary slices from juvenile male rats (14-17 days of age) containing the commissural region of the NTS (NTScom) were incubated with progesterone (1 µm) or vehicle (0.004% DMSO) for 60 min. We performed whole-cell voltage-clamp recordings of spontaneous excitatory postsynaptic currents (EPSCs) in the NTScom and determined membrane properties by applying depolarizing current steps. In comparison to vehicle-treated cells, progesterone exposure attenuates the firing frequency response to current injection and reduces the EPSC amplitude without modifying the EPSC frequency or the basal membrane properties. These data do not support our hypothesis, because they indicate that incubation with progesterone attenuates intrinsic action potential generation and inhibits excitatory synaptic inputs in the NTS. Given that these results are more in line with the protective effect of progesterone against excitotoxicity resulting from various insults, we propose that progesterone acts via inhibition of ionic flux.


Subject(s)
Neurons/metabolism , Progesterone/metabolism , Solitary Nucleus/metabolism , Action Potentials/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Male , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
13.
Am J Physiol Regul Integr Comp Physiol ; 316(3): R281-R297, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30601705

ABSTRACT

Amphibian respiratory development involves a dramatic metamorphic transition from gill to lung breathing and coordination of distinct motor outputs. To determine whether the emergence of adult respiratory motor patterns was associated with similarly dramatic changes in motoneuron (MN) properties, we characterized the intrinsic electrical properties of American bullfrog trigeminal MNs innervating respiratory muscles comprising the buccal pump. In premetamorphic tadpoles (TK stages IX-XVIII) and adult frogs, morphometric analyses and whole cell recordings were performed in trigeminal MNs identified by fluorescent retrograde labeling. Based on the amplitude of the depolarizing sag induced by hyperpolarizing voltage steps, two MN subtypes (I and II) were identified in tadpoles and adults. Compared with type II MNs, type I MNs had larger sag amplitudes (suggesting a larger hyperpolarization-activated inward current), greater input resistance, lower rheobase, hyperpolarized action potential threshold, steeper frequency-current relationships, and fast firing rates and received fewer excitatory postsynaptic currents. Postmetamorphosis, type I MNs exhibited similar sag, enhanced postinhibitory rebound, and increased action potential amplitude with a smaller-magnitude fast afterhyperpolarization. Compared with tadpoles, type II MNs from frogs received higher-frequency, larger-amplitude excitatory postsynaptic currents. Input resistance decreased and rheobase increased postmetamorphosis in all MNs, concurrent with increased soma area and hyperpolarized action potential threshold. We suggest that type I MNs are likely recruited in response to smaller, buccal-related synaptic inputs as well as larger lung-related inputs, whereas type II MNs are likely recruited in response to stronger synaptic inputs associated with larger buccal breaths, lung breaths, or nonrespiratory behaviors involving powerful muscle contractions.


Subject(s)
Gills/growth & development , Gills/physiology , Lung/growth & development , Lung/physiology , Metamorphosis, Biological/physiology , Motor Neurons/physiology , Rana catesbeiana/physiology , Respiratory Muscles/innervation , Respiratory Muscles/physiology , Action Potentials/physiology , Animals , Cheek/innervation , Cheek/physiology , Excitatory Postsynaptic Potentials/physiology , Synaptic Transmission/physiology , Trigeminal Nerve/physiology
14.
Cell Calcium ; 77: 49-57, 2019 01.
Article in English | MEDLINE | ID: mdl-30530093

ABSTRACT

Local circuit GABAergic inhibitory interneurons control the integration and transfer of information in many brain regions. Several different forms of plasticity reported at interneuron excitatory synapses are triggered by cell- and synapse-specific postsynaptic calcium (Ca2+) mechanisms. To support this function, the spatiotemporal dynamics of dendritic Ca2+ elevations must be tightly regulated. While the dynamics of postsynaptic Ca2+ signaling through activation of different Ca2+ sources has been explored, the Ca2+ extrusion mechanisms that operate in interneuron dendrites during different patterns of activity remain largely unknown. Using a combination of whole-cell patch-clamp recordings and two-photon Ca2+ imaging in acute mouse hippocampal slices, we characterized the Ca2+ extrusion mechanisms activated by Ca2+ transients (CaTs) associated with backpropagating action potentials (bAPs) in dendrites of hippocampal CA1 stratum radiatum interneurons. Our data showed that Ca2+ clearance increased as a function of activity, pointing to an activity-dependent recruitment of specific Ca2+ extrusion mechanisms. bAP-CaTs were significantly prolonged in the presence of the plasma membrane Ca2+ ATPase (PMCA) and Na+/Ca2+ exchanger (NCX) inhibitors as well as the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and the mitochondria Ca2+ uniporter (MCU) blockers. While PMCA, NCX and SERCA pumps cooperated in the cytosolic Ca2+ removal at a wide range of concentrations, the MCU was only activated at higher Ca2+ loads produced by repetitive interneuron firing. These results identify a division of labor between distinct Ca2+ extrusion mechanisms shaping dendritic Ca2+ dynamics and possibly contributing to activity-dependent regulation of synaptic inputs in interneurons. In addition, the MCU activated by larger Ca2+ levels may be involved in the activity-dependent ATP production or interneuron-selective vulnerability associated with cytosolic Ca2+ overloads under pathological conditions.


Subject(s)
CA1 Region, Hippocampal/metabolism , Calcium Signaling , Calcium/metabolism , Dendrites/metabolism , Interneurons/metabolism , Synapses/metabolism , Action Potentials , Animals , CA1 Region, Hippocampal/cytology , Interneurons/cytology , Mice
15.
Nat Commun ; 9(1): 5043, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30487571

ABSTRACT

GABAergic interneurons in the hippocampus provide for local and long-distance coordination of neurons in functionally connected areas. Vasoactive intestinal peptide-expressing (VIP+) interneurons occupy a distinct niche in circuitry as many of them specialize in innervating GABAergic cells, thus providing network disinhibition. In the CA1 hippocampus, VIP+ interneuron-selective cells target local interneurons. Here, we discover a type of VIP+ neuron whose axon innervates CA1 and also projects to the subiculum (VIP-LRPs). VIP-LRPs show specific molecular properties and target interneurons within the CA1 area but both interneurons and pyramidal cells within subiculum. They are interconnected through gap junctions but demonstrate sparse spike coupling in vitro. In awake mice, VIP-LRPs decrease their activity during theta-run epochs and are more active during quiet wakefulness but not coupled to sharp-wave ripples. Together, the data provide evidence for VIP interneuron molecular diversity and functional specialization in controlling cell ensembles along the hippocampo-subicular axis.


Subject(s)
GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Hippocampus/cytology , Interneurons/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , CA1 Region, Hippocampal/metabolism , Female , Male , Mice , Pyramidal Cells/metabolism
16.
Proc Natl Acad Sci U S A ; 115(28): 7434-7439, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29946034

ABSTRACT

Neuronal communication relies on action potential discharge, with the frequency and the temporal precision of action potentials encoding information. Hippocampal mossy fibers have long been recognized as conditional detonators owing to prominent short-term facilitation of glutamate release displayed during granule cell burst firing. However, the spiking patterns required to trigger action potential firing in CA3 pyramidal neurons remain poorly understood. Here, we show that glutamate release from mossy fiber terminals triggers action potential firing of the target CA3 pyramidal neurons independently of the average granule cell burst frequency, a phenomenon we term action potential counting. We find that action potential counting in mossy fibers gates glutamate release over a broad physiological range of frequencies and action potential numbers. Using rapid Ca2+ imaging we also show that the magnitude of evoked Ca2+ influx stays constant during action potential trains and that accumulated residual Ca2+ is gradually extruded on a time scale of several hundred milliseconds. Using experimentally constrained 3D model of presynaptic Ca2+ influx, buffering, and diffusion, and a Monte Carlo model of Ca2+-activated vesicle fusion, we argue that action potential counting at mossy fiber boutons can be explained by a unique interplay between Ca2+ dynamics and buffering at release sites. This is largely determined by the differential contribution of major endogenous Ca2+ buffers calbindin-D28K and calmodulin and by the loose coupling between presynaptic voltage-gated Ca2+ channels and release sensors and the relatively slow Ca2+ extrusion rate. Taken together, our results identify a previously unexplored information-coding mechanism in the brain.


Subject(s)
Action Potentials/physiology , CA3 Region, Hippocampal/physiology , Calcium Signaling/physiology , Models, Neurological , Mossy Fibers, Hippocampal/physiology , Pyramidal Cells/physiology , Animals , CA3 Region, Hippocampal/cytology , Calcium/metabolism , Male , Presynaptic Terminals/physiology , Pyramidal Cells/cytology , Rats
17.
Front Mol Neurosci ; 11: 119, 2018.
Article in English | MEDLINE | ID: mdl-29706865

ABSTRACT

Genetic variants of the fragile X mental retardation syndrome-related protein 1 (FXR1) have been associated to mood regulation, schizophrenia, and bipolar disorders. Nonetheless, genetic association does not indicate a functional link of a given gene to neuronal activity and associated behaviors. In addition, interaction between multiple genes is often needed to sculpt complex traits such as behavior. Thus, modulation of neuronal functions by a given gene product, such as Fxr1, has to be thoroughly studied in the context of its interactions with other gene products. Glycogen synthase kinase-3 beta (GSK3ß) is a shared target of several psychoactive drugs. In addition, interaction between functional polymorphisms of GSK3b and FXR1 has been implicated in mood regulation in healthy subjects and bipolar patients. However, the mechanistic underpinnings of this interaction remain unknown. We used somatic CRISPR/Cas9 mediated knockout and overexpression to investigate the impact of Fxr1 and its regulator Gsk3ß on neuronal functions directly in the adult mouse brain. Suppression of Gsk3ß or increase of Fxr1 expression in medial prefrontal cortex neurons leads to anxiolytic-like responses associated with a decrease in AMPA mediated excitatory postsynaptic currents. Furthermore, Fxr1 and Gsk3ß modulate glutamatergic neurotransmission via regulation of AMPA receptor subunits GluA1 and GluA2 as well as vesicular glutamate transporter VGlut1. These results underscore a potential mechanism underlying the action of Fxr1 on neuronal activity and behaviors. Association between the Gsk3ß-Fxr1 pathway and glutamatergic signaling also suggests how it may contribute to emotional regulation in response to mood stabilizers, or in illnesses like mood disorders and schizophrenia.

18.
Elife ; 62017 07 27.
Article in English | MEDLINE | ID: mdl-28749338

ABSTRACT

Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.


Subject(s)
Action Potentials/physiology , Drosophila Proteins/genetics , Image Processing, Computer-Assisted/methods , Nerve Tissue Proteins/genetics , Neurons/physiology , Photons , Voltage-Sensitive Dye Imaging/methods , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , HEK293 Cells , Humans , Male , Microscopy , Neurons/cytology , Optogenetics , Organ Culture Techniques , Rats, Sprague-Dawley , Rats, Wistar , Subcellular Fractions
19.
J Neurosci ; 37(19): 4913-4927, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28411270

ABSTRACT

Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release.SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release, P/Q-type VGCCs act through microdomain signaling to recruit additional release sites.


Subject(s)
Calcium Signaling/physiology , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/physiology , Neurons/physiology , Potassium Channels, Voltage-Gated/metabolism , Presynaptic Terminals/physiology , Animals , Calcium/metabolism , Cells, Cultured , Female , Ion Channel Gating/physiology , Male , Mice , Mice, Inbred C57BL , Potassium Channels, Voltage-Gated/classification
20.
eNeuro ; 4(6)2017.
Article in English | MEDLINE | ID: mdl-29308430

ABSTRACT

The presence of liquid near the larynx of immature mammals triggers prolonged apneas with significant O2 desaturations and bradycardias. When excessive, this reflex (the laryngeal chemoreflex; LCR) can be fatal. Our understanding of the origins of abnormal LCR are limited; however, perinatal stress and male sex are risk factors for cardio-respiratory failure in infants. Because exposure to stress during early life has deleterious and sex-specific consequences on brain development it is plausible that respiratory reflexes are vulnerable to neuroendocrine dysfunction. To address this issue, we tested the hypothesis that neonatal maternal separation (NMS) is sufficient to exacerbate LCR-induced cardio-respiratory inhibition in anesthetized rat pups. Stressed pups were separated from their mother 3 h/d from postnatal days 3 to 12. At P14-P15, pups were instrumented to monitor breathing, O2 saturation (Spo2), and heart rate. The LCR was activated by water injections near the larynx (10 µl). LCR-induced apneas were longer in stressed pups than controls; O2 desaturations and bradycardias were more profound, especially in males. NMS increased the frequency and amplitude of spontaneous EPSCs (sEPSCs) in the dorsal motor nucleus of the vagus (DMNV) of males but not females. The positive relationship between corticosterone and testosterone observed in stressed pups (males only) suggests that disruption of neuroendocrine function by stress is key to sex-based differences in abnormal LCR. Because testosterone application onto medullary slices augments EPSC amplitude only in males, we propose that testosterone-mediated enhancement of synaptic connectivity within the DMNV contributes to the male bias in cardio-respiratory inhibition following LCR activation in stressed pups.


Subject(s)
Apnea/physiopathology , Bradycardia/physiopathology , Larynx/physiopathology , Reflex/physiology , Sex Characteristics , Stress, Psychological/physiopathology , Animals , Animals, Newborn , Apnea/etiology , Bradycardia/etiology , Corticosterone/metabolism , Excitatory Postsynaptic Potentials/physiology , Female , Male , Maternal Deprivation , Medulla Oblongata/physiopathology , Rats, Sprague-Dawley , Respiration , Stress, Physiological/physiology , Testosterone/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...