Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sol Phys ; 299(8): 120, 2024.
Article in English | MEDLINE | ID: mdl-39220341

ABSTRACT

The Solar eruptioN Integral Field Spectrograph (SNIFS) is a solar-gazing spectrograph scheduled to fly in the summer of 2025 on a NASA sounding rocket. Its goal is to view the solar chromosphere and transition region at a high cadence (1 s) both spatially ( 0.5 ″ ) and spectrally (33 mÅ) viewing wavelengths around Lyman alpha (1216 Å), Si iii (1206 Å), and O v (1218 Å) to observe spicules, nanoflares, and possibly a solar flare. This time cadence will provide yet-unobserved detail about fast-changing features of the Sun. The instrument is comprised of a Gregorian-style reflecting telescope combined with a spectrograph via a specialized mirrorlet array that focuses the light from each spatial location in the image so that it may be spectrally dispersed without overlap from neighboring locations. This paper discusses the driving science, detailed instrument and subsystem design, and preintegration testing of the SNIFS instrument.

2.
Sol Phys ; 298(6): 78, 2023.
Article in English | MEDLINE | ID: mdl-37325237

ABSTRACT

The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.

3.
Geophys Res Lett ; 46(16): 9334-9343, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-33795894

ABSTRACT

We report the first global, time-dependent simulation of the Mars upper atmospheric responses to a realistic solar flare event, an X8.2 eruption on 10 September 2017. The Mars Global Ionosphere-Thermosphere Model runs with realistically specified flare irradiance, giving results in reasonably good agreement with the Mars Atmosphere and Volatile EvolutioN spacecraft measurements. It is found that the ionized and neutral regimes of the upper atmosphere are significantly disturbed by the flare but react differently. The ionospheric electron density enhancement is concentrated below ~110-km altitude due to enhanced solar X-rays, closely following the time evolution of the flare. The neutral atmospheric perturbation increases with altitude and is important above ~150-km altitude, in association with atmospheric upwelling driven by solar extreme ultraviolet heating. It takes ~2.5 hr past the flare peak to reach the maximum disturbance and then additional ~10 hr to generally settle down to preflare levels.

4.
Sol Phys ; 293(2): 21, 2018.
Article in English | MEDLINE | ID: mdl-31258201

ABSTRACT

The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 ( 5 × 10 - 8 - 5 × 10 - 5 W m - 2 ) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

SELECTION OF CITATIONS
SEARCH DETAIL