Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Sci Transl Med ; 16(752): eadm8132, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896603

ABSTRACT

The human ileum contains a high density of enteroendocrine L-cells, which release the appetite-suppressing hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in response to food intake. Recent evidence highlighted the potential role of food structures in PYY release, but the link between food structures, ileal metabolites, and appetite hormone release remains unclear owing to limited access to intact human ileum. In a randomized crossover trial (ISRCTN11327221; isrctn.com), we investigated the role of human ileum in GLP-1 and PYY release by giving healthy volunteers diets differing in fiber and food structure: high-fiber (intact or disrupted food structures) or low-fiber disrupted food structures. We used nasoenteric tubes to sample chyme from the intact distal ileum lumina of humans in the fasted state and every 60 min for 480 min postprandially. We demonstrate the highly dynamic, wide-ranging molecular environment of the ileum over time, with a substantial decrease in ileum bacterial numbers and bacterial metabolites after food intake. We also show that high-fiber diets, independent of food structure, increased PYY release compared with a low-fiber diet during 0 to 240 min postprandially. High-fiber diets also increased ileal stachyose, and a disrupted high-fiber diet increased certain ileal amino acids. Treatment of human ileal organoids with ileal fluids or an amino acid and stachyose mixture stimulated PYY expression in a similar profile to blood PYY concentrations, confirming the role of ileal metabolites in PYY release. Our study demonstrates the diet-induced changes over time in the metabolite environment of intact human ileum, which play a role in PYY release.


Subject(s)
Diet , Ileum , Peptide YY , Humans , Ileum/metabolism , Peptide YY/metabolism , Adult , Male , Dietary Fiber/metabolism , Glucagon-Like Peptide 1/metabolism , Female , Metabolome , Postprandial Period , Cross-Over Studies , Young Adult
3.
J Physiol ; 601(16): 3461-3480, 2023 08.
Article in English | MEDLINE | ID: mdl-37269207

ABSTRACT

An understanding of the metabolic determinants of postexercise appetite regulation would facilitate development of adjunctive therapeutics to suppress compensatory eating behaviours and improve the efficacy of exercise as a weight-loss treatment. Metabolic responses to acute exercise are, however, dependent on pre-exercise nutritional practices, including carbohydrate intake. We therefore aimed to determine the interactive effects of dietary carbohydrate and exercise on plasma hormonal and metabolite responses and explore mediators of exercise-induced changes in appetite regulation across nutritional states. In this randomized crossover study, participants completed four 120 min visits: (i) control (water) followed by rest; (ii) control followed by exercise (30 min at ∼75% of maximal oxygen uptake); (iii) carbohydrate (75 g maltodextrin) followed by rest; and (iv) carbohydrate followed by exercise. An ad libitum meal was provided at the end of each 120 min visit, with blood sample collection and appetite assessment performed at predefined intervals. We found that dietary carbohydrate and exercise exerted independent effects on the hormones glucagon-like peptide 1 (carbohydrate, 16.8 pmol/L; exercise, 7.4 pmol/L), ghrelin (carbohydrate, -48.8 pmol/L; exercise: -22.7 pmol/L) and glucagon (carbohydrate, 9.8 ng/L; exercise, 8.2 ng/L) that were linked to the generation of distinct plasma 1 H nuclear magnetic resonance metabolic phenotypes. These metabolic responses were associated with changes in appetite and energy intake, and plasma acetate and succinate were subsequently identified as potential novel mediators of exercise-induced appetite and energy intake responses. In summary, dietary carbohydrate and exercise independently influence gastrointestinal hormones associated with appetite regulation. Future work is warranted to probe the mechanistic importance of plasma acetate and succinate in postexercise appetite regulation. KEY POINTS: Carbohydrate and exercise independently influence key appetite-regulating hormones. Temporal changes in postexercise appetite are linked to acetate, lactate and peptide YY. Postexercise energy intake is associated with glucagon-like peptide 1 and succinate levels.


Subject(s)
Appetite Regulation , Dietary Carbohydrates , Male , Appetite/physiology , Appetite Regulation/physiology , Cross-Over Studies , Energy Intake/physiology , Exercise/physiology , Ghrelin/metabolism , Ghrelin/pharmacology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Insulin/pharmacology , Peptide YY/metabolism , Peptide YY/pharmacology , Succinates/pharmacology , Humans
4.
Int J Food Sci Nutr ; 74(3): 327-337, 2023 May.
Article in English | MEDLINE | ID: mdl-37221881

ABSTRACT

High-fibre diets are beneficial for many health outcomes via a wide range of mechanisms including gut microbiota fermentation-derived short-chain fatty acid (SCFAs) production. Mycoprotein (marketed as Quorn) is a food high in fibre (>6 g/100 g wet weight (ww)) and protein (13 g/100 g ww) which has been shown to have positive effects on glycemic control and appetite in humans. Nevertheless, the mechanisms underpinning this are poorly understood. Here, we investigate the changes in gut microbiota α- and ß-diversity, pH and SCFAs production in faecal batch cultures supplemented with pre-digested mycoprotein (Quorn), soy, chicken and control (unsupplemented) using eight fresh stools from healthy donors. The results showed that pre-digested mycoprotein did not alter pH (p = .896), α- or ß-diversity of the gut microbiota when compared to the control, soy, and chicken. Nevertheless, chicken led to a significant increase in total SCFAs post-24 h vs. control (+57.07 mmol/L, p = .01). In particular, propionate increased when compared to soy (+19.59 mmol/L, p = .03) and the control (+23.19 mmol/L, p < .01). No other differences in SCFAs were detected. In conclusion, pre-digested mycoprotein was not fermented in vitro by healthy gut microbiota in the settings of this experiment.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Fermentation , Batch Cell Culture Techniques , Fatty Acids, Volatile/metabolism , Feces
5.
Liver Cancer ; 12(1): 19-31, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36872928

ABSTRACT

Introduction: The burden of metabolic (dysfunction) associated fatty liver disease (MAFLD) is rising mirrored by an increase in hepatocellular cancer (HCC). MAFLD and its sequelae are characterized by perturbations in lipid handling, inflammation, and mitochondrial damage. The profile of circulating lipid and small molecule metabolites with the development of HCC is poorly characterized in MAFLD and could be used in future studies as a biomarker for HCC. Methods: We assessed the profile of 273 lipid and small molecule metabolites by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry in serum from patients with MAFLD (n = 113) and MAFLD-associated HCC (n = 144) from six different centers. Regression models were used to identify a predictive model of HCC. Results: Twenty lipid species and one metabolite, reflecting changes in mitochondrial function and sphingolipid metabolism, were associated with the presence of cancer on a background of MAFLD with high accuracy (AUC 0.789, 95% CI: 0.721-0.858), which was enhanced with the addition of cirrhosis to the model (AUC 0.855, 95% CI: 0.793-0.917). In particular, the presence of these metabolites was associated with cirrhosis in the MAFLD subgroup (p < 0.001). When considering the HCC cohort alone, the metabolic signature was an independent predictor of overall survival (HR 1.42, 95% CI: 1.09-1.83, p < 0.01). Conclusion: These exploratory findings reveal a metabolic signature in serum which is capable of accurately detecting the presence of HCC on a background of MAFLD. This unique serum signature will be taken forward for further investigation of diagnostic performance as biomarker of early stage HCC in patients with MAFLD in the future.

6.
Am J Clin Nutr ; 116(5): 1368-1378, 2022 11.
Article in English | MEDLINE | ID: mdl-36137188

ABSTRACT

BACKGROUND: Production of SCFAs from food is a complex and dynamic saccharolytic fermentation process mediated by both human and gut microbial factors. Knowledge of SCFA production and of the relation between SCFA profiles and dietary patterns is lacking. OBJECTIVES: Temporal changes in SCFA concentrations in response to 2 contrasting diets were investigated using a novel GC-MS method. METHODS: Samples were obtained from a randomized, controlled, crossover trial designed to characterize the metabolic response to 4 diets. Participants (n = 19) undertook these diets during an inpatient stay (of 72 h). Serum samples were collected 2 h after breakfast (AB), after lunch (AL), and after dinner (AD) on day 3, and a fasting sample (FA) was obtained on day 4. The 24-h urine samples were collected on day 3. In this substudy, samples from the 2 extreme diets representing a diet with high adherence to WHO healthy eating recommendations and a typical Western diet were analyzed using a bespoke GC-MS method developed to detect and quantify 10 SCFAs and precursors in serum and urine samples. RESULTS: Considerable interindividual variation in serum SCFA concentrations was observed across all time points, and temporal fluctuations were observed for both diets. Although the sample collection timing exerted a greater magnitude of effect on circulating SCFA concentrations, the unhealthy diet was associated with a lower concentration of acetic acid (FA: coefficient: -17.0; SE: 5.8; P-trend = 0.00615), 2-methylbutyric acid (AL: coefficient: -0.1; SE: 0.028; P-trend = 4.13 × 10-4 and AD: coefficient: -0.1; SE: 0.028; P-trend = 2.28 × 10-3), and 2-hydroxybutyric acid (FA: coefficient: -15.8; SE: 5.11; P-trend: 4.09 × 10-3). In contrast, lactic acid was significantly higher in the unhealthy diet (AL: coefficient: 750.2; SE: 315.2; P-trend = 0.024 and AD: coefficient: 1219.3; SE: 322.6; P-trend: 8.28 × 10-4). CONCLUSIONS: The GC-MS method allowed robust mapping of diurnal patterns in SCFA concentrations, which were affected by diet, and highlighted the importance of standardizing the timing of SCFA measurements in dietary studies. This trial was registered on the NIHR UK clinical trial gateway and with ISRCTN as ISRCTN43087333.


Subject(s)
Diet , Fatty Acids, Volatile , Humans , Cross-Over Studies , Food , Acetic Acid , Diet, Western , Dietary Fiber/metabolism
7.
Int J Obes (Lond) ; 46(11): 1948-1959, 2022 11.
Article in English | MEDLINE | ID: mdl-36123404

ABSTRACT

OBJECTIVE: Using a systematic review and meta-analysis, we aimed to estimate the mean effect of acute glucagon administration on components of energy balance and glucose homoeostasis in adults without diabetes. METHODS: CENTRAL, CINAHL, Embase, MEDLINE, PubMed, and Scopus databases were searched from inception to May 2021. To be included, papers had to be a randomised, crossover, single- or double-blind study, measuring ad libitum meal energy intake, energy expenditure, subjective appetite, glucose, and/or insulin following acute administration of glucagon and an appropriate comparator in adults without diabetes. Risk of bias was assessed using the Revised Cochrane Risk of Bias Tool for Randomized trials with additional considerations for cross-over trials. Certainty of evidence was assessed using the GRADE approach. Random-effect meta-analyses were performed for outcomes with at least five studies. This study is registered on PROSPERO (CRD42021269623). RESULTS: In total, 13 papers (15 studies) were considered eligible: energy intake (5 studies, 77 participants); energy expenditure (5 studies, 59 participants); subjective appetite (3 studies, 39 participants); glucose (13 studies, 159 participants); insulin (12 studies, 147 participants). All studies had some concerns with regards to risk of bias. Mean intervention effect of acute glucagon administration on energy intake was small (standardised mean difference [SMD]: -0.19; 95% CI, -0.59 to 0.21; P = 0.345). Mean intervention effect of acute glucagon administration on energy expenditure (SMD: 0.72; 95% CI, 0.37-1.08; P < 0.001), glucose (SMD: 1.11; 95% CI, 0.60-1.62; P < 0.001), and insulin (SMD: 1.33; 95% CI, 0.88-1.77; P < 0.001) was moderate to large. CONCLUSIONS: Acute glucagon administration produces substantial increases in energy expenditure, and in circulating insulin and glucose concentrations. However, the effect of acute glucagon administration on energy intake is unclear. Insufficient evidence was available to evaluate the acute effect of glucagon on subjective appetite.


Subject(s)
Diabetes Mellitus , Glucagon , Humans , Adult , Glucose , Insulin , Energy Metabolism , Homeostasis , Randomized Controlled Trials as Topic
8.
Am J Clin Nutr ; 116(2): 335-361, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35388874

ABSTRACT

BACKGROUND: Noncommunicable disease development is related to impairments in glycemic and insulinemic responses, which can be modulated by fiber intake. Fiber's beneficial effects upon metabolic health can be partially attributed to the production of SCFAs via microbial fermentation of fiber in the gastrointestinal tract. OBJECTIVES: We aimed to determine the effects of SCFAs, acetate, propionate, and butyrate on glycemic control in humans. METHODS: The CENTRAL, Embase, PubMed, Scopus, and Web of Science databases were searched from inception to 7 December 2021. Papers were included if they reported a randomized controlled trial measuring glucose and/or insulin compared to a placebo in adults. Studies were categorized by the type of SCFA and intervention duration. Random-effects meta-analyses were performed for glucose and insulin for those subject categories with ≥3 studies, or a narrative review was performed. RESULTS: We identified 43 eligible papers, with 46 studies within those records (n = 913), and 44 studies were included in the meta-analysis. Vinegar intake decreased the acute glucose response [standard mean difference (SMD), -0.53; 95% CI, -0.92 to -0.14; n = 67] in individuals with impaired glucose tolerance or type 2 diabetes and in healthy volunteers (SMD, -0.27; 95% CI, -0.54 to 0.00; n = 186). The meta-analyses for acute acetate, as well as acute and chronic propionate studies, showed no significant effect. CONCLUSIONS: Vinegar decreased the glucose response acutely in healthy and metabolically unhealthy individuals. Acetate, propionate, butyrate, and mixed SCFAs had no effect on blood glucose and insulin in humans. Significant heterogeneity, risks of bias, and publication biases were identified in several study categories, including the acute vinegar glucose response. As evidence was very uncertain, caution is urged when interpreting these results. Further high-quality research is required to determine the effects of SCFAs on glycemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Glycemic Control , Acetic Acid/pharmacology , Adult , Blood Glucose , Butyrates/metabolism , Glucose , Humans , Insulin , Propionates , Randomized Controlled Trials as Topic
9.
Int J Obes (Lond) ; 46(2): 255-268, 2022 02.
Article in English | MEDLINE | ID: mdl-34732837

ABSTRACT

OBJECTIVE: To determine the acute effect of fasted and fed exercise on energy intake, energy expenditure, subjective hunger and gastrointestinal hormone release. METHODS: CENTRAL, Embase, MEDLINE, PsycInfo, PubMed, Scopus and Web of Science databases were searched to identify randomised, crossover studies in healthy individuals that compared the following interventions: (i) fasted exercise with a standardised post-exercise meal [FastEx + Meal], (ii) fasted exercise without a standardised post-exercise meal [FastEx + NoMeal], (iii) fed exercise with a standardised post-exercise meal [FedEx + Meal], (iv) fed exercise without a standardised post-exercise meal [FedEx + NoMeal]. Studies must have measured ad libitum meal energy intake, within-lab energy intake, 24-h energy intake, energy expenditure, subjective hunger, acyl-ghrelin, peptide YY, and/or glucagon-like peptide 1. Random-effect network meta-analyses were performed for outcomes containing ≥5 studies. RESULTS: 17 published articles (23 studies) were identified. Ad libitum meal energy intake was significantly lower during FedEx + Meal compared to FedEx + NoMeal (MD: -489 kJ; 95% CI, -898 to -80 kJ; P = 0.019). Within-lab energy intake was significantly lower during FastEx + NoMeal compared to FedEx + NoMeal (MD: -1326 kJ; 95% CI, -2102 to -550 kJ; P = 0.001). Similarly, 24-h energy intake following FastEx + NoMeal was significantly lower than FedEx + NoMeal (MD: -2095 kJ; 95% CI, -3910 kJ to -280 kJ; P = 0.024). Energy expenditure was however significantly lower during FastEx + NoMeal compared to FedEx+NoMeal (MD: -0.67 kJ/min; 95% CI, -1.10 to -0.23 kJ/min; P = 0.003). Subjective hunger was significantly higher during FastEx + Meal (MD: 13 mm; 95% CI, 5-21 mm; P = 0.001) and FastEx + NoMeal (MD: 23 mm; 95% CI, 16-30 mm; P < 0.001) compared to FedEx + NoMeal. CONCLUSION: FastEx + NoMeal appears to be the most effective strategy to produce a short-term decrease in energy intake, but also results in increased hunger and lowered energy expenditure. Concerns regarding experimental design however lower the confidence in these findings, necessitating future research to rectify these issues when investigating exercise meal timing and energy balance. PROSPERO REGISTRATION NUMBER: CRD42020208041. KEY POINTS: Fed exercise with a standardised post-exercise meal resulted in the lowest energy intake at the ad libitum meal served following exercise completion. Fasted exercise without a standardised post-exercise meal resulted in the lowest within-lab and 24-h energy intake, but also produced the lowest energy expenditure and highest hunger. Methodological issues lower the confidence in these findings and necessitate future work to address identified problems.


Subject(s)
Energy Intake/physiology , Energy Metabolism/physiology , Exercise/physiology , Fasting/adverse effects , Gastrointestinal Hormones/analysis , Fasting/blood , Fasting/metabolism , Gastrointestinal Hormones/blood , Gastrointestinal Hormones/metabolism , Humans , Hunger/physiology
10.
Front Med (Lausanne) ; 9: 1065365, 2022.
Article in English | MEDLINE | ID: mdl-36698827

ABSTRACT

Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.

11.
Front Physiol ; 12: 770455, 2021.
Article in English | MEDLINE | ID: mdl-34764887

ABSTRACT

Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.

12.
Mol Nutr Food Res ; 65(22): e2100316, 2021 11.
Article in English | MEDLINE | ID: mdl-34605164

ABSTRACT

SCOPE: Prior investigation has suggested a positive association between increased colonic propionate production and circulating odd-chain fatty acids (OCFAs; pentadecanoic acid [C15:0], heptadecanoic acid [C17:0]). As the major source of propionate in humans is the microbial fermentation of dietary fiber, OCFAs have been proposed as candidate biomarkers of dietary fiber. The objective of this study is to critically assess the plausibility, robustness, reliability, dose-response, time-response aspects of OCFAs as potential biomarkers of fermentable fibers in two independent studies using a validated analytical method. METHODS AND RESULTS: OCFAs are first assessed in a fiber supplementation study, where 21 participants received 10 g dietary fiber supplementation for 7 days. OCFAs are then assessed in a highly controlled inpatient setting, which 19 participants consumed a high fiber (45.1 g per day) and a low fiber diet (13.6 g per day) for 4 days. Collectively in both studies, dietary intakes of fiber as fiber supplementations or having consumed a high fiber diet do not increase circulating levels of OCFAs. The dose and temporal relations are not observed. CONCLUSION: Current study has generated new insight on the utility of OCFAs as fiber biomarkers and highlighted the importance of critical assessment of candidate biomarkers before application.


Subject(s)
Dietary Fiber , Fatty Acids , Biomarkers , Diet , Eating , Fermentation , Humans , Reproducibility of Results
13.
J Cachexia Sarcopenia Muscle ; 12(6): 2134-2144, 2021 12.
Article in English | MEDLINE | ID: mdl-34585852

ABSTRACT

BACKGROUND: Skeletal muscle mass begins to decline from 40 years of age. Limited data suggest that dietary fibre may modify lean body mass (BM), of which skeletal muscle is the largest and most malleable component. We investigated the relationship between dietary fibre intake, skeletal muscle mass and associated metabolic and functional parameters in adults aged 40 years and older. METHODS: We analysed cross-sectional data from the US National Health and Nutrition Examination Survey between 2011 and 2018 from adults aged 40 years and older. Covariate-adjusted multiple linear regression analyses were used to evaluate the association between dietary fibre intake and BM components (BM, body mass index [BMI], total lean mass, appendicular lean mass, bone mineral content, total fat, trunk fat; n = 6454), glucose homeostasis (fasting glucose, fasting insulin, HOMA2-IR; n = 5032) and skeletal muscle strength (combined grip strength; n = 5326). BM components and skeletal muscle strength were expressed relative to BM (per kg of BM). RESULTS: Higher intakes of dietary fibre were significantly associated with increased relative total lean mass (ß: 0.69 g/kg BM; 95% CI, 0.48-0.89 g/kg BM; P < 0.001), relative appendicular lean mass (ß: 0.34 g/kg BM; 95% CI, 0.23-0.45 g/kg BM; P < 0.001), relative bone mineral content (ß: 0.05 g/kg BM; 95% CI, 0.02-0.07 g/kg BM; P < 0.001) and relative combined grip strength (ß: 0.002 kg/kg BM; 95% CI, 0.001-0.003 kg/kg BM; P < 0.001). Conversely, higher dietary fibre intakes were significantly associated with a lower BM (ß: -0.20; 95% CI, -0.28 to -0.11 kg; P < 0.001), BMI (ß: -0.08 kg/m2 ; 95%CI, -0.10 to -0.05 kg/m2 ), relative total fat (ß: -0.68 g/kg BM; 95% CI, -0.89 to -0.47 g/kg BM; P < 0.001), relative trunk fat (ß: -0.48 g/kg BM; 95%CI, -0.63 to -0.33 g/kg; P < 0.001), fasting glucose (ß: -0.01 mmol/L; 95% CI, -0.02 to -0.00 mmol/L; P = 0.017), fasting insulin (ß: -0.71 pmol/L; 95% CI, -1.01 to -0.41 pmol/L; P < 0.001) and HOMA2-IR (ß: -0.02 AU; 95% CI, -0.02 to -0.01 AU; P < 0.001). CONCLUSIONS: Higher dietary fibre intakes are associated with a lower BM and enhanced body composition, characterized by a reduction in fat mass and an increase in lean mass. Higher dietary fibre intakes were also associated with improvements in glucose homeostasis and skeletal muscle strength. Increasing dietary fibre intake may be a viable strategy to prevent age-associated declines in skeletal muscle mass.


Subject(s)
Body Composition , Muscle, Skeletal , Cross-Sectional Studies , Dietary Fiber , Nutrition Surveys
14.
Sports Med ; 51(9): 1949-1966, 2021 09.
Article in English | MEDLINE | ID: mdl-33905087

ABSTRACT

BACKGROUND: Elevated glucose and insulin levels are major risk factors in the development of cardiometabolic disease. Aerobic exercise is widely recommended to improve glycaemic control, yet its acute effect on glycaemia and glucoregulatory hormones has not been systematically reviewed and analysed in healthy adults. OBJECTIVE: To determine the effect of a single bout of continuous aerobic exercise on circulating glucose, insulin, and glucagon concentrations in healthy adults. METHODS: CENTRAL, CINAHL, Embase, Global Health, HMIC, Medline, PubMed, PsycINFO, ScienceDirect, Scopus and Web of Science databases were searched from inception to May 2020. Papers were included if they reported a randomised, crossover study measuring glucose and/or insulin and/or glucagon concentrations before and immediately after a single bout of continuous aerobic exercise (≥ 30 min) compared to a time-matched, resting control arm in healthy adults. The risk of bias and quality of evidence were assessed using the Cochrane Risk of Bias Tool and GRADE approach, respectively. Random-effects meta-analyses were performed for glucose, insulin, and glucagon. Sub-group meta-analyses and meta-regression were performed for categorical (metabolic state [postprandial or fasted], exercise mode [cycle ergometer or treadmill]) and continuous (age, body mass index, % males, maximal aerobic capacity, exercise duration, exercise intensity) covariates, respectively. RESULTS: 42 papers (51 studies) were considered eligible: glucose (45 studies, 391 participants), insulin (38 studies, 377 participants) and glucagon (5 studies, 47 participants). Acute aerobic exercise had no significant effect on glucose concentrations (mean difference: - 0.05 mmol/L; 95% CI, - 0.22 to 0.13 mmol/L; P = 0.589; I2: 91.08%, large heterogeneity; moderate-quality evidence). Acute aerobic exercise significantly decreased insulin concentrations (mean difference: - 18.07 pmol/L; 95% CI, - 30.47 to - 5.66 pmol/L; P = 0.004; I2: 95.39%, large heterogeneity; moderate-quality evidence) and significantly increased glucagon concentrations (mean difference: 24.60 ng/L; 95% CI, 16.25 to 32.95 ng/L; P < 0.001; I2: 79.36%, large heterogeneity; moderate-quality evidence). Sub-group meta-analyses identified that metabolic state modified glucose and insulin responses, in which aerobic exercise significantly decreased glucose (mean difference: - 0.27 mmol/L; 95% CI, - 0.55 to - 0.00 mmol/L; P = 0.049; I2: 89.72%, large heterogeneity) and insulin (mean difference: - 42.63 pmol/L; 95% CI, - 66.18 to - 19.09 pmol/L; P < 0.001; I2: 81.29%, large heterogeneity) concentrations in the postprandial but not fasted state. Meta-regression revealed that the glucose concentrations were also moderated by exercise duration and maximal aerobic capacity. CONCLUSIONS: Acute aerobic exercise performed in the postprandial state decreases glucose and insulin concentrations in healthy adults. Acute aerobic exercise also increases glucagon concentrations irrespective of metabolic state. Therefore, aerobic exercise undertaken in the postprandial state is an effective strategy to improve acute glycaemic control in healthy adults, supporting the role of aerobic exercise in reducing cardiometabolic disease incidence. PROSPERO REGISTRATION NUMBER: CRD42020191345.


Subject(s)
Glucagon , Insulin , Adult , Blood Glucose , Cross-Over Studies , Exercise , Female , Glucose , Humans , Male , Randomized Controlled Trials as Topic
15.
Front Nutr ; 7: 561010, 2020.
Article in English | MEDLINE | ID: mdl-33195362

ABSTRACT

Poor dietary choices are major risk factors for obesity and non-communicable diseases, which places an increasing burden on healthcare systems worldwide. To monitor the effectiveness of healthy eating guidelines and strategies, there is a need for objective measures of dietary intake in community settings. Metabolites derived from specific foods present in urine samples can provide objective biomarkers of food intake (BFIs). Whilst the majority of biomarker discovery/validation studies have investigated potential biomarkers for single foods only, this study considered the whole diet by using menus that delivered a wide range of foods in meals that emulated conventional UK eating patterns. Fifty-one healthy participants (range 19-77 years; 57% female) followed a uniquely designed, randomized controlled dietary intervention, and provided spot urine samples suitable for discovery of BFIs within a real-world context. Free-living participants prepared and consumed all foods and drinks in their own homes and were asked to follow the protocols for meal consumption and home urine sample collection. This study also assessed the robustness, and impact on data quality, of a minimally invasive urine collection protocol. Overall the study design was well-accepted by participants and concluded successfully without any drop outs. Compliance for urine collection, adherence to menu plans, and observance of recommended meal timings, was shown to be very high. Metabolome analysis using mass spectrometry coupled with data mining demonstrated that the study protocol was well-suited for BFI discovery and validation. Novel, putative biomarkers for an extended range of foods were identified including legumes, curry, strongly-heated products, and artificially sweetened, low calorie beverages. In conclusion, aspects of this study design would help to overcome several current challenges in the development of BFI technology. One specific attribute was the examination of BFI generalizability across related food groups and across different preparations and cooking methods of foods. Furthermore, the collection of urine samples at multiple time points helped to determine which spot sample was optimal for identification and validation of BFIs in free-living individuals. A further valuable design feature centered on the comprehensiveness of the menu design which allowed the testing of biomarker specificity within a biobank of urine samples.

16.
Nat Metab ; 2(9): 840-848, 2020 09.
Article in English | MEDLINE | ID: mdl-32694821

ABSTRACT

A key metabolic activity of the gut microbiota is the fermentation of non-digestible carbohydrate, which generates short-chain fatty acids (SCFAs) as the principal end products. SCFAs are absorbed from the gut lumen and modulate host metabolic responses at different organ sites. Evidence suggests that these organ sites include skeletal muscle, the largest organ in humans, which plays a pivotal role in whole-body energy metabolism. In this Review, we evaluate the evidence indicating that SCFAs mediate metabolic cross-talk between the gut microbiota and skeletal muscle. We discuss the effects of three primary SCFAs (acetate, propionate and butyrate) on lipid, carbohydrate and protein metabolism in skeletal muscle, and we consider the potential mechanisms involved. Furthermore, we highlight the emerging roles of these gut-derived metabolites in skeletal muscle function and exercise capacity, present limitations in current knowledge and provide suggestions for future work.


Subject(s)
Fatty Acids, Volatile/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Animals , Energy Metabolism , Gastrointestinal Microbiome , Humans
17.
Br J Nutr ; 123(12): 1321-1332, 2020 06 28.
Article in English | MEDLINE | ID: mdl-32100651

ABSTRACT

Mycoprotein is a food high in both dietary fibre and non-animal-derived protein. Global mycoprotein consumption is increasing, although its effect on human health has not yet been systematically reviewed. This study aims to systematically review the effects of mycoprotein on glycaemic control and energy intake in humans. A literature search of randomised controlled trials was performed in PubMed, Embase, Web of Science, Google Scholar and hand search. A total of twenty-one studies were identified of which only five studies, totalling 122 participants, met the inclusion criteria. All five studies were acute studies of which one reported outcomes on glycaemia and insulinaemia, two reported on energy intake and two reported on all of these outcomes. Data were extracted, and risk-of-bias assessment was then conducted. The results did not show a clear effect of acute mycoprotein on blood glucose levels, but it showed a decrease in insulin levels. Acute mycoprotein intake also showed to decrease energy intake at an ad libitum meal and post-24 h in healthy lean, overweight and obese humans. In conclusion, the acute ingestion of mycoprotein reduces energy intake and insulinaemia, whereas its impact on glycaemia is currently unclear. However, evidence comes from a very limited number of heterogeneous studies. Further well-controlled studies are needed to elucidate the short- and long-term effects of mycoprotein intake on glycaemic control and energy intake, as well as the mechanisms underpinning these effects.


Subject(s)
Dietary Fiber/pharmacology , Dietary Proteins/pharmacology , Energy Intake/drug effects , Fungal Proteins/pharmacology , Glycemic Control , Blood Glucose/drug effects , Humans , Overweight/blood , Overweight/physiopathology
18.
Nat Food ; 1(11): 693-704, 2020 Nov.
Article in English | MEDLINE | ID: mdl-37128029

ABSTRACT

Elevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG. Using stable isotope 13C-labelled pea seeds, coupled with synchronous gastric, duodenal and plasma sampling in vivo, we demonstrate that maintenance of cell structure and changes in starch morphology are closely related to lower glucose availability in the small intestine, resulting in acutely lower PPG and promotion of changes in the gut bacterial composition associated with long-term metabolic health improvements.

19.
Nat Food ; 1(6): 355-364, 2020 Jun.
Article in English | MEDLINE | ID: mdl-37128097

ABSTRACT

Habitual consumption of poor quality diets is linked directly to risk factors for many non-communicable diseases. This has resulted in the vast majority of countries and the World Health Organization developing policies for healthy eating to reduce the prevalence of non-communicable diseases in the population. However, there is mounting evidence of variability in individual metabolic responses to any dietary intervention. We have developed a method for applying a pipeline for understanding interindividual differences in response to diet, based on coupling data from highly controlled dietary studies with deep metabolic phenotyping. In this feasibility study, we create an individual Dietary Metabotype Score (DMS) that embodies interindividual variability in dietary response and captures consequent dynamic changes in concentrations of urinary metabolites. We find an inverse relationship between the DMS and blood glucose concentration. There is also a relationship between the DMS and urinary metabolic energy loss. Furthermore, we use a metabolic entropy approach to visualize individual and collective responses to dietary interventions. Potentially, the DMS offers a method to target and to enhance dietary response at the individual level, thereby reducing the burden of non-communicable diseases at the population level.

20.
Food Funct ; 11(1): 617-627, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31859318

ABSTRACT

Refined starchy foods are usually rapidly digested, leading to poor glycaemic control, but not all starchy foods are the same. Complex carbohydrates like resistant starch (RS) have been shown to reduce the metabolic risk factors for chronic diseases such as hyperglycaemia and overweight. The aim of the project was to develop a semolina-based food made from a starch branching enzyme II (sbeIIa/b-AB) durum wheat mutant with a high RS content and to measure its glycaemic index using a double-blind randomised pilot study. We report here the amylose, RS and non-starch polysaccharide concentration of raw sbeIIa/b-AB and wild-type control (WT) semolina. We measured RS after cooking to identify a model food for in vivo testing. Retrograded sbeIIa/b-AB semolina showed a higher RS concentration than the WT control (RS = 4.87 ± 0.6 g per 100 g, 0.77 ± 0.34 g per 100 g starch DWB, respectively), so pudding was selected as the test food. Ten healthy participants consumed ∼50 g of total starch from WT and sbeIIa/b-AB pudding and a standard glucose drink. Capillary blood glucose concentrations were measured in the fasting and postprandial state (2 h): incremental area-under-the-curve (iAUC) and GI were calculated. We found no evidence of difference in GI between sbeIIa/b-AB pudding and the WT control, but the starch digestibility was significantly lower in sbeIIa/b-AB pudding compared to the WT control in vitro (C90 = 33.29% and 47.38%, respectively). Based on these results, novel sbeIIa/b-AB wheat foods will be used in future in vivo studies to test the effect of different RS concentrations and different food matrices on glycaemia.


Subject(s)
1,4-alpha-Glucan Branching Enzyme/genetics , Flour/analysis , Plant Proteins/genetics , Starch/metabolism , Triticum/metabolism , 1,4-alpha-Glucan Branching Enzyme/metabolism , Adult , Biocatalysis , Female , Glycemic Index , Humans , Male , Mutation , Pilot Projects , Plant Proteins/metabolism , Starch/chemistry , Triticum/chemistry , Triticum/enzymology , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...