Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 36(12): 2668-2681, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31290972

ABSTRACT

The recent emergence and spread of X-linked segregation distorters-called "Paris" system-in the worldwide species Drosophila simulans has elicited the selection of drive-resistant Y chromosomes. Here, we investigate the evolutionary history of 386 Y chromosomes originating from 29 population samples collected over a period of 20 years, showing a wide continuum of phenotypes when tested against the Paris distorters, from high sensitivity to complete resistance (males sire ∼95% to ∼40% female progeny). Analyzing around 13 kb of Y-linked gene sequences in a representative subset of nine Y chromosomes, we identified only three polymorphic sites resulting in three haplotypes. Remarkably, one of the haplotypes is associated with resistance. This haplotype is fixed in all samples from Sub-Saharan Africa, the region of origin of the drivers. Exceptionally, with the spread of the drivers in Egypt and Morocco, we were able to record the replacement of the sensitive lineage by the resistant haplotype in real time, within only a few years. In addition, we performed in situ hybridization, using satellite DNA probes, on a subset of 21 Y chromosomes from six locations. In contrast to the low molecular polymorphism, this revealed extensive structural variation suggestive of rapid evolution, either neutral or adaptive. Moreover, our results show that intragenomic conflicts can drive astonishingly rapid replacement of Y chromosomes and suggest that the emergence of Paris segregation distorters in East Africa occurred less than half a century ago.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Y Chromosome , Animals , Female , Haplotypes , Male , Meiosis , Phylogeography , Polymorphism, Genetic , Sex Ratio
2.
Genetica ; 140(7-9): 375-92, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23111927

ABSTRACT

The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.


Subject(s)
DNA Transposable Elements , Drosophila/genetics , Animals , Evolution, Molecular , Genome, Insect
3.
PLoS One ; 3(9): e3249, 2008 Sep 22.
Article in English | MEDLINE | ID: mdl-18813361

ABSTRACT

BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.


Subject(s)
Drosophila melanogaster/genetics , Gene Silencing , Telomere/ultrastructure , Animals , Chromosome Mapping , Crosses, Genetic , DNA Transposable Elements , Epigenesis, Genetic , Gene Expression Regulation , Models, Biological , Models, Genetic , Phenotype , RNA Interference , Temperature , Transgenes
4.
Genetics ; 174(3): 1365-71, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16387875

ABSTRACT

Sex-ratio meiotic drive is the preferential transmission of the X chromosome by XY males, which occurs in several Drosophila species and results in female-biased progeny. Although the trait has long been known to exist, its molecular basis remains completely unknown. Here we report a fine-mapping experiment designed to characterize the major drive locus on a sex-ratio X chromosome of Drosophila simulans originating from the Seychelles (XSR6). This primary locus was found to contain two interacting elements at least, both of which are required for drive expression. One of them was genetically tracked to a tandem duplication containing six annotated genes (Trf2, CG32712, CG12125, CG1440, CG12123, org-1), and the other to a candidate region located approximately 110 kb away and spanning seven annotated genes. RT-PCR showed that all but two of these genes were expressed in the testis of both sex-ratio and standard males. In situ hybridization to polytene chromosomes revealed a complete association of the duplication with the sex-ratio trait in random samples of X chromosomes from Madagascar and Reunion.


Subject(s)
Drosophila/genetics , Meiosis , Physical Chromosome Mapping , Sex Ratio , X Chromosome , Animals , Base Sequence , Chromosomes , Drosophila/cytology , Female , Fluorescent Dyes , Gene Duplication , Genes, Insect , Genetic Markers , In Situ Hybridization , Indoles , Male , Molecular Sequence Data , Recombination, Genetic
5.
Genetica ; 120(1-3): 137-50, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15088654

ABSTRACT

This review deals with the differences between Drosophila melanogaster and Drosophila simulans in their mitotic and polytene chromosomes. The description of the mitotic karyotypes of D. melanogaster and D. simulans is mainly based on the methods that allow to differentiate their euchromatin from their heterochromatin: banding patterns, distribution of satellite DNAs and location of the rDNA. The polytene chromosomes karyotypes are known for many years to differ by a major paracentric inversion on chromosome 3 and minor few differences. The main difference take place in their chromosomal polymorphism: D. melanogaster is highly polymorphic while D. simulans has long been known to be a monomorphic species. In fact, despite worldwide studies of natural populations for both species, only 14 unique inversions have been described for D. simulans while more than 500 inversions are already known for D. melanogaster.


Subject(s)
Chromosomes/ultrastructure , Drosophila melanogaster/genetics , Drosophila/genetics , Genes, Insect , Mitosis , Animals , Chromosome Inversion , DNA Transposable Elements , DNA, Satellite/genetics , Female , Gene Deletion , Heterochromatin/genetics , Heterozygote , Karyotyping , Male , Models, Genetic , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...