Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Malar J ; 14: 307, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26249666

ABSTRACT

BACKGROUND: For personal protection against mosquito bites, user-friendly natural repellents, particularly from plant origin, are considered as a potential alternative to applications currently based on synthetics such as DEET, the standard chemical repellent. This study was carried out in Thailand to evaluate the repellency of Ligusticum sinense hexane extract (LHE) against laboratory Anopheles minimus and Aedes aegypti, the primary vectors of malaria and dengue fever, respectively. METHODS: Repellent testing of 25% LHE against the two target mosquitoes; An. minimus and Ae. aegypti, was performed and compared to the standard repellent, DEET, with the assistance of six human volunteers of either sex under laboratory conditions. The physical and biological stability of LHE also was determined after keeping it in conditions that varied in temperature and storage time. Finally, LHE was analysed chemically using the qualitative GC/MS technique in order to demonstrate a profile of chemical constituents. RESULTS: Ethanol preparations of LHE, with and without 5% vanillin, demonstrated a remarkably effective performance when compared to DEET in repelling both An. minimus and Ae. aegypti. While 25% LHE alone provided median complete-protection times against An. minimus and Ae. aegypti of 11.5 (9.0-14.0) hours and 6.5 (5.5-9.5) hours, respectively, the addition of 5% vanillin increased those times to 12.5 (9.0-16.0) hours and 11.0 (7.0-13.5) hours, respectively. Correspondingly, vanillin added to 25% DEET also extended the protection times from 11.5 (10.5-15.0) hours to 14.25 (11.0-18.0) hours and 8.0 (5.0-9.5) hours to 8.75 (7.5-11.0) hours against An. minimus and Ae. aegypti, respectively. No local skin reaction such as rash, swelling or irritation was observed during the study period. Although LHE samples kept at ambient temperature (21-35°C), and 45°C for 1, 2 and 3 months, demonstrated similar physical characteristics, such as similar viscosity and a pleasant odour, to those that were fresh and stored at 4°C, their colour changed from light- to dark-brown. Interestingly, repellency against Ae. aegypti of stored LHE was presented for a period of at least 3 months, with insignificantly varied efficacy. Chemical analysis revealed that the main components of LHE were 3-N-butylphthalide (31.46%), 2, 5-dimethylpyridine (21.94%) and linoleic acid (16.41%), constituting 69.81% of all the extract composition. CONCLUSIONS: LHE with proven repellent efficacy, no side effects on the skin, and a rather stable state when kept in varied conditions is considered to be a potential candidate for developing a new natural alternative to DEET, or an additional weapon for integrated vector control when used together with other chemicals/measures.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Insect Repellents/pharmacology , Ligusticum/chemistry , Mosquito Control/methods , Adult , Animals , Female , Humans , Male , Plant Extracts/pharmacology , Species Specificity , Young Adult
2.
Parasitol Res ; 100(4): 729-37, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17096143

ABSTRACT

Chemical analysis on Curcuma zedoaria rhizome volatile oil, using gas chromatography-mass spectrometer techniques, demonstrated the presence of beta-tumerone (19.88%), 1,8-cineole (8.93%), and 7-zingiberene (7.84%) as major constituents. Larvicidal efficacy against Aedes aegypti mosquitoes of zedoary oil and its formulated preparation, zedoary oil-impregnated sand granules, were investigated and compared with that of Abate(R)sand (temephos). Zedoary oil exhibited pronounced potential against the fourth instar larvae of A. aegypti with an LC(50) and LC(99) of 33.45 and 83.39 ppm, respectively. Application of zedoary oil at a dosage yielding ten times that of LC(99) offered complete larval mortality (100% mortality) for a period of 3 days, and the larval mortality subsequently decreased to lower than 50% after application for more than 5 days. Zedoary oil-impregnated sand granules provided remarkably longer activity, with a larval mortality of 100% for a period of 9 days; and mortality below 50% was obtained in week 3 of application. The complete larval mortality that resulted from applying temephos at dosages of 0.1 and 1 ppm persisted for a period of 6 days and 4 weeks, respectively, and the larval mortality below 50% was reported on day 18 and week 11, respectively. Testing A. aegypti species against stored samples of zedoary oil-impregnated sand granules demonstrated that the product stored at 4 degrees C showed the longest larvicidal activity, followed by those kept at ambient temperature and 45 degrees C, yielding a complete larval mortality for 9, 8, and 6 days, respectively. Most samples of zedoary oil-impregnated sand granules stored at each temperature for 1 month showed slightly higher efficacy than those kept for 2 months. The larvicidal efficacy of samples stored at 4 degrees C seemed to be comparable to that of the fresh sample. The efficacy in killing A. aegypti larvae and good biological stability of zedoary oil-impregnated sand granules make this product promising as an alternative to essential oil in the development of new botanical natural larvicide for use in mosquito control programs.


Subject(s)
Aedes/drug effects , Curcuma/chemistry , Insecticides/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Animals , Insecticides/chemistry , Larva/drug effects , Silicon Dioxide
3.
J Vector Ecol ; 31(1): 138-44, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16859102

ABSTRACT

Ethanolic extracts derived from three species of the Piperaceae (pepper) family, Piper longum L., P. ribesoides Wall., and P. sarmentosum Roxb. ex Hunt., were evaluated for efficacy against early 4th instar larvae of Aedes aegypti mosquitoes using larvicidal bioassays. The highest larvicidal efficacy was established from P. longum, followed by P. sarmentosum and P. ribesoides, with LC50 values of 2.23, 4.06, and 8.13 ppm, respectively. Observations of morphological alterations on treated 4th instar larvae revealed that most organs, except anal papillae, had a normal structural appearance that was similar to controls. Under light microscopy, the internal structures of anal papillae in the treated larvae showed shrinkage, while the external features were normal in appearance. Ultrastructural studies, however, clearly demonstrated external destruction, with extensive damage and shrunken cuticle of the anal papillae. The structural deformation of anal papillae probably led to their dysfunction, which may be intrinsically associated with the death of the larvae. This study affords some evidence regarding the action site of the pepper extracts and suggests their potential in developing new types of larvicides used for mosquito control.


Subject(s)
Aedes , Insecticides , Piper/chemistry , Aedes/ultrastructure , Animals , Ethanol/chemistry , Larva , Lethal Dose 50 , Microscopy, Electron, Scanning , Mosquito Control , Plant Extracts
4.
Rev Inst Med Trop Sao Paulo ; 48(1): 33-7, 2006.
Article in English | MEDLINE | ID: mdl-16547577

ABSTRACT

Three Piper species, Piper longum, P. ribesoides and P. sarmentosum, were selected for investigation of adulticidal potential against Stegomyia aegypti, a main vector of dengue and dengue haemorrhagic fever. Successive extraction by maceration with 95% ethanol showed percentage yields of ethanolic extracts, which derived from P. longum, P. ribesoides and P. sarmentosum, of 8.89, 3.21 and 5.30% (w/w), respectively. All Piper extracts illustrated an impressive adulticidal activity when tested against female mosquitoes by topical application. The susceptibility of St. aegypti females to ethanol-extracted Piper was dose dependent and varied among the plant species. The highest adulticidal effect was established from P. sarmentosum, followed by P. ribesoides and P. longum, with LD50 values of 0.14, 0.15 and 0.26 microg/female, respectively. The potential of these Piper species, as possible mosquitocides, established convincing activity for further researches to develop natural substances for combat against adult mosquitoes.


Subject(s)
Culicidae , Insect Vectors , Insecticides , Piper/chemistry , Animals , Female , Plant Extracts/pharmacology
5.
Rev. Inst. Med. Trop. Säo Paulo ; 48(1): 33-37, Jan.-Feb. 2006. ilus, tab
Article in English | LILACS | ID: lil-423332

ABSTRACT

Três espécies de Piper, Piper longum, P. ribesoides e P. sarmentosum, foram selecionadas para investigação da potencialidade contra Stegomyia aegypti adultos, principal vetor de dengue e febre do dengue hemorrágico. Sucessivas extrações por maceração com etanol a 95% mostraram uma porcentagem de extratos etanólicos, derivados de P. longum, P. ribesoides e P. sarmentosum, de 8,89, 3,21 e 5,30% (w/w), respectivamente. Todos os extratos de Piper mostraram atividade adulticida expressiva quando testados contra fêmeas de mosquitos através de aplicação tópica. A suscetibilidade das fêmeas do St. aegypt ao extrato de Piper etanólico foi dose dependente e variou entre as espécies de plantas. O mais elevado efeito adulticida foi demonstrado a partir do P. sarmentosum, seguido pelo P. ribesoides e P. longum, valores LD50 de 0,14, 0,15 e 0,26 µg/fêmea, respectivamente. O potencial destas espécies de Piper, como possíveis mosquiticidas, estabeleceu atividade convincente para futuras pesquisas a fim de desenvolver substâncias naturais para o combate a mosquitos adultos.


Subject(s)
Animals , Female , Culicidae , Insect Vectors , Insecticides , Piper/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...