Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nature ; 620(7973): 393-401, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407818

ABSTRACT

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.


Subject(s)
Cytidine Deaminase , Lung Neoplasms , Humans , Cytidine Deaminase/deficiency , Cytidine Deaminase/drug effects , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA Breaks, Double-Stranded , Genomic Instability , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Targeted Therapy , Mutation , Drug Resistance, Neoplasm
2.
Clin Transl Med ; 13(6): e1298, 2023 06.
Article in English | MEDLINE | ID: mdl-37317665

ABSTRACT

BACKGROUND: Differentiated thyroid cancer (DTC) affects thousands of lives worldwide each year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) quality of life and might be unnecessary in indolent DTC cases. On the other hand, the lack of biomarkers indicating a potential metastatic thyroid cancer imposes an additional challenge to managing and treating patients with this disease. AIM: The presented clinical setting highlights the unmet need for a precise molecular diagnosis of DTC and potential metastatic disease, which should dictate appropriate therapy. MATERIALS AND METHODS: In this article, we present a differential multi-omics model approach, including metabolomics, genomics, and bioinformatic models, to distinguish normal glands from thyroid tumours. Additionally, we are proposing biomarkers that could indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. RESULTS: Normal and tumour thyroid tissue from DTC patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumour cells. The consistency of the DTC metabolic profile allowed us to build a bioinformatic classification model capable of clearly distinguishing normal from tumor thyroid tissues, which might help diagnose thyroid cancer. Moreover, based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intra-tumour heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. DISCUSSION: Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. CONCLUSIONS: Well-designed, prospective translational clinical trials will ultimately show the value of this integrated multi-omics approach and early diagnosis of DTC and potential metastatic PTC.


Subject(s)
Adenocarcinoma , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Prospective Studies , Quality of Life , Telomere Shortening , Telomere , Neoplasm Recurrence, Local , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics
3.
medRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945575

ABSTRACT

Differentiated thyroid cancer (DTC) affects thousands of lives worldwide every year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) the quality of life and might be unnecessary in indolent DTC cases. This clinical setting highlights the unmet need for a precise molecular diagnosis of DTC, which should dictate appropriate therapy. Here we propose a differential multi-omics model approach to distinguish normal gland from thyroid tumor and to indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. Based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intratumor heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. Specifically, normal and tumor thyroid tissues from these patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumor cells. Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. Well-designed, prospective translational clinical trials will ultimately show the value of this targeted molecular approach. TRANSLATIONAL RELEVANCE: In this article, we propose a new integrated metabolic, genomic, and cytopathologic methods to diagnose Differentiated Thyroid Cancer when the conventional methods failed. Moreover, we suggest metabolic and genomic markers to help predict high-risk Papillary Thyroid Cancer. Both might be important tools to avoid unnecessary surgery and/or radioiodine therapy that can worsen the quality of life of the patients more than living with an indolent Thyroid nodule.

5.
Nature ; 608(7923): 609-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35948633

ABSTRACT

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Subject(s)
Exons , Gene Deletion , Molecular Targeted Therapy , Neoplasms , Oncogenes , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Animals , Exons/genetics , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Oncogenes/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
6.
Oncogene ; 40(41): 6034-6048, 2021 10.
Article in English | MEDLINE | ID: mdl-34453124

ABSTRACT

BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF-mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (ß-catenin). Mouse models mimicking the oncogenic ß-catenin mutation show that the combination of three oncogenic mutations (Ctnnb1, Braf, and Smad4) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFß pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.


Subject(s)
Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Smad4 Protein/metabolism , Animals , Carcinogenesis , Colorectal Neoplasms/pathology , Disease Models, Animal , Humans , Mice
8.
Life Sci Alliance ; 4(3)2021 03.
Article in English | MEDLINE | ID: mdl-33376133

ABSTRACT

p53 is the most frequently mutated gene in human cancers. Li-Fraumeni syndrome patients inheriting heterozygous p53 mutations often have a much-increased risk to develop cancer(s) at early ages. Recent studies suggest that some individuals inherited p53 mutations do not have the early onset or high frequency of cancers. These observations suggest that other genetic, environmental, immunological, epigenetic, or stochastic factors modify the penetrance of the cancerous mutant Tp53 phenotype. To test this possibility, this study explored dominant genetic modifiers of Tp53 mutations in heterozygous mice with different genetic backgrounds. Both genetic and stochastic effects upon tumor formation were observed in these mice. The genetic background of mice carrying Tp53 mutations has a strong influence upon the tissue type of the tumor produced and the number of tumors formed in a single mouse. The onset age of a tumor is correlated with the tissue type of that tumor, although identical tumor tissue types can occur at very different ages. These observations help to explain the great diversity of cancers in different Li-Fraumeni patients over lifetimes.


Subject(s)
Carcinogenesis/genetics , Germ-Line Mutation , Li-Fraumeni Syndrome/genetics , Phenotype , Tumor Suppressor Protein p53/genetics , Animals , Disease Models, Animal , Female , Genetic Predisposition to Disease , Heterozygote , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred NOD , Mice, Transgenic , Stochastic Processes
9.
Nat Cancer ; 1(9): 923-934, 2020 09.
Article in English | MEDLINE | ID: mdl-34476408

ABSTRACT

Macroautophagy (hereafter autophagy) degrades and recycles intracellular components to sustain metabolism and survival during starvation. Host autophagy promotes tumor growth by providing essential tumor nutrients. Autophagy also regulates immune cell homeostasis and function and suppresses inflammation. Although host autophagy does not promote a T-cell anti-tumor immune response in tumors with low tumor mutational burden (TMB), whether this was the case in tumors with high TMB was not known. Here we show that autophagy, especially in the liver, promotes tumor immune tolerance by enabling regulatory T-cell function and limiting stimulator of interferon genes, T-cell response and interferon-γ, which enables growth of high-TMB tumors. We have designated this as hepatic autophagy immune tolerance. Autophagy thereby promotes tumor growth through both metabolic and immune mechanisms depending on mutational load and autophagy inhibition is an effective means to promote an antitumor T-cell response in high-TMB tumors.


Subject(s)
Autophagy , Neoplasms , Autophagy/genetics , Homeostasis , Humans , Immunity, Cellular , Mutation , Neoplasms/genetics
10.
DNA Repair (Amst) ; 86: 102754, 2020 02.
Article in English | MEDLINE | ID: mdl-31794893

ABSTRACT

Radiation-induced lymphomagenesis results from a clonogenic lymphoid cell proliferation due to genetic alterations and immunological dysregulation. Mouse models had been successfully used to identify risk and protective factors for radiation-induced DNA damage and carcinogenesis. The mammalian SETD4 is a poorly understood putative methyl-transferase. Here, we report that conditional Setd4 deletion in adult mice significantly extended the survival of radiation-induced T-lymphoma. However, in Tp53 deficient mice, Setd4 deletion did not delay the radiation-induced lymphomagenesis although it accelerated the spontaneous T-lymphomagenesis in non-irradiated mice. The T-lymphomas were largely clonogenic in both Setd4flox/flox and Setd4Δ/Δ mice based on sequencing analysis of the T-cell antigen ß receptors. However, the Setd4Δ/Δ T-lymphomas were CD4+/CD8+ double positive, while the littermate Setd4flox/floxtumor were largely CD8+ single positive. A genomic sequencing analysis on chromosome deletion, inversion, duplication, and translocation, revealed a larger contribution of inversion but a less contribution of deletion to the overall chromosome rearrangements in the in Setd4Δ/Δ tumors than the Setd4flox/flox tumors. In addition, the Setd4flox/flox mice died more often from the large sizes of primary thymus lymphoma at earlier time, but there was a slight increase of lymphoma dissemination among peripheral organs in Setd4Δ/Δ at later times. These results suggest that Setd4 has a critical role in modulating lymphomagenesis and may be targeted to suppress radiation-induced carcinogenesis.


Subject(s)
Gene Deletion , Lymphoma/genetics , Methyltransferases/genetics , Neoplasms, Radiation-Induced/genetics , Thymus Neoplasms/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Lymphoma/immunology , Lymphoma/mortality , Mice , Neoplasms, Radiation-Induced/immunology , Neoplasms, Radiation-Induced/mortality , Receptors, Antigen, T-Cell, alpha-beta/genetics , Sequence Analysis, DNA , Thymus Neoplasms/immunology , Thymus Neoplasms/mortality , Tumor Suppressor Protein p53/genetics
11.
Cancer Res ; 79(17): 4339-4347, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31300474

ABSTRACT

Lung carcinoids (LC) are rare and slow growing primary lung neuroendocrine tumors. We performed targeted exome sequencing, mRNA sequencing, and DNA methylation array analysis on macro-dissected LCs. Recurrent mutations were enriched for genes involved in covalent histone modification/chromatin remodeling (34.5%; MEN1, ARID1A, KMT2C, and KMT2A) as well as DNA repair (17.2%) pathways. Unsupervised clustering and principle component analysis on gene expression and DNA methylation profiles showed three robust molecular subtypes (LC1, LC2, LC3) with distinct clinical features. MEN1 gene mutations were found to be exclusively enriched in the LC2 subtype. LC1 and LC3 subtypes were predominately found at peripheral and endobronchial lung, respectively. The LC3 subtype was diagnosed at a younger age than LC1 and LC2 subtypes. IHC staining of two biomarkers, ASCL1 and S100, sufficiently stratified the three subtypes. This molecular classification of LCs into three subtypes may facilitate understanding of their molecular mechanisms and improve diagnosis and clinical management. SIGNIFICANCE: Integrative genomic analysis of lung carcinoids identifies three novel molecular subtypes with distinct clinical features and provides insight into their distinctive molecular signatures of tumorigenesis, diagnosis, and prognosis.


Subject(s)
Carcinoid Tumor/genetics , Carcinoid Tumor/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle/genetics , Cohort Studies , DNA Methylation , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mutation , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Reproducibility of Results , S100 Proteins/metabolism
12.
Mol Cancer ; 18(1): 92, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31072393

ABSTRACT

The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various cancers. We previously screened genes upregulated in human hepatocellular carcinomas for their metastatic function in a mouse model of pancreatic neuroendocrine tumor (PNET) and identified that human RHAMMB promoted liver metastasis. It was unknown whether RHAMMB is upregulated in pancreatic cancer or contributes to its progression. In this study, we found that RHAMM protein was frequently upregulated in human PNETs. We investigated alternative splicing isoforms, RHAMMA and RHAMMB, by RNA-Seq analysis of primary PNETs and liver metastases. RHAMMB, but not RHAMMA, was significantly upregulated in liver metastases. RHAMMB was crucial for in vivo metastatic capacity of mouse and human PNETs. RHAMMA, carrying an extra 15-amino acid-stretch, did not promote metastasis in spontaneous and experimental metastasis mouse models. Moreover, RHAMMB was substantially higher than RHAMMA in pancreatic ductal adenocarcinoma (PDAC). RHAMMB, but not RHAMMA, correlated with both higher EGFR expression and poorer survival of PDAC patients. Knockdown of EGFR abolished RHAMMB-driven PNET metastasis. Altogether, our findings suggest a clinically relevant function of RHAMMB, but not RHAMMA, in promoting PNET metastasis in part through EGFR signaling. RHAMMB can thus serve as a prognostic factor for pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Extracellular Matrix Proteins/genetics , Hyaluronan Receptors/genetics , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Up-Regulation , Alternative Splicing , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Disease Progression , ErbB Receptors/metabolism , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Neoplasm Transplantation , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Signal Transduction , Survival Analysis
13.
Nat Commun ; 9(1): 4158, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315258

ABSTRACT

The commonly mutated genes in pancreatic neuroendocrine tumors (PanNETs) are ATRX, DAXX, and MEN1. We genotyped 64 PanNETs and found 58% carry ATRX, DAXX, and MEN1 mutations (A-D-M mutant PanNETs) and this correlates with a worse clinical outcome than tumors carrying the wild-type alleles of all three genes (A-D-M WT PanNETs). We performed RNA sequencing and DNA-methylation analysis to reveal two distinct subgroups with one consisting entirely of A-D-M mutant PanNETs. Two genes differentiating A-D-M mutant from A-D-M WT PanNETs were high ARX and low PDX1 gene expression with PDX1 promoter hyper-methylation in the A-D-M mutant PanNETs. Moreover, A-D-M mutant PanNETs had a gene expression signature related to that of alpha-cells (FDR q-value < 0.009) of pancreatic islets including increased expression of HNF1A and its transcriptional target genes. This gene expression profile suggests that A-D-M mutant PanNETs originate from or transdifferentiate into a distinct cell type similar to alpha cells.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Neuroendocrine Tumors/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , X-linked Nuclear Protein/genetics , Co-Repressor Proteins , DNA Methylation/genetics , DNA Methylation/physiology , Humans , Immunohistochemistry , Molecular Chaperones , Promoter Regions, Genetic/genetics , Prospective Studies , Retrospective Studies
14.
Cell Death Differ ; 25(1): 154-160, 2018 01.
Article in English | MEDLINE | ID: mdl-29099487

ABSTRACT

The p53 gene contains homozygous mutations in ~50-60% of human cancers. About 90% of these mutations encode missense mutant proteins that span ~190 different codons localized in the DNA-binding domain of the gene and protein. These mutations produce a protein with a reduced capacity to bind to a specific DNA sequence that regulates the p53 transcriptional pathway. Eight of these mutations are localized in codons that account for ~28% of the total p53 mutations and these alleles appear to be selected for preferentially in human cancers of many tissue types. This article explores the question 'Why are there hotspot mutations in the p53 gene in human cancers?' Four possible reasons for this are considered; (1) the hotspot mutant alleles produce a protein that has a highly altered structure, (2) environmental mutagens produce allele-specific changes in the p53 gene, (3) these mutations arise at selected sites in the gene due to a specific DNA sequence, such as a methylated cytosine residue in a CpG dinucleotide, which has a higher mutation rate changing C to T nucleotides, (4) along with the observed change in mutant p53 proteins, which produce a loss of function (DNA binding and transcription), some mutant proteins have an allele-specific gain of function that promotes cancer. Evidence is presented that demonstrates the first three possibilities all contribute some property to this list of hotspot mutations. The fourth possibility remains to be tested.


Subject(s)
Genes, p53 , Mutation, Missense , Tumor Suppressor Protein p53/genetics , Gain of Function Mutation , Gene Frequency , Humans , Tumor Suppressor Protein p53/chemistry
15.
Oncologist ; 21(11): 1315-1325, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27566247

ABSTRACT

BACKGROUND: The frequency with which targeted tumor sequencing results will lead to implemented change in care is unclear. Prospective assessment of the feasibility and limitations of using genomic sequencing is critically important. METHODS: A prospective clinical study was conducted on 100 patients with diverse-histology, rare, or poor-prognosis cancers to evaluate the clinical actionability of a Clinical Laboratory Improvement Amendments (CLIA)-certified, comprehensive genomic profiling assay (FoundationOne), using formalin-fixed, paraffin-embedded tumors. The primary objectives were to assess utility, feasibility, and limitations of genomic sequencing for genomically guided therapy or other clinical purpose in the setting of a multidisciplinary molecular tumor board. RESULTS: Of the tumors from the 92 patients with sufficient tissue, 88 (96%) had at least one genomic alteration (average 3.6, range 0-10). Commonly altered pathways included p53 (46%), RAS/RAF/MAPK (rat sarcoma; rapidly accelerated fibrosarcoma; mitogen-activated protein kinase) (45%), receptor tyrosine kinases/ligand (44%), PI3K/AKT/mTOR (phosphatidylinositol-4,5-bisphosphate 3-kinase; protein kinase B; mammalian target of rapamycin) (35%), transcription factors/regulators (31%), and cell cycle regulators (30%). Many low frequency but potentially actionable alterations were identified in diverse histologies. Use of comprehensive profiling led to implementable clinical action in 35% of tumors with genomic alterations, including genomically guided therapy, diagnostic modification, and trigger for germline genetic testing. CONCLUSION: Use of targeted next-generation sequencing in the setting of an institutional molecular tumor board led to implementable clinical action in more than one third of patients with rare and poor-prognosis cancers. Major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access. Early and serial sequencing in the clinical course and expanded access to genomically guided early-phase clinical trials and targeted agents may increase actionability. IMPLICATIONS FOR PRACTICE: Identification of key factors that facilitate use of genomic tumor testing results and implementation of genomically guided therapy may lead to enhanced benefit for patients with rare or difficult to treat cancers. Clinical use of a targeted next-generation sequencing assay in the setting of an institutional molecular tumor board led to implementable clinical action in over one third of patients with rare and poor prognosis cancers. The major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access both on trial and off label. Approaches to increase actionability include early and serial sequencing in the clinical course and expanded access to genomically guided early phase clinical trials and targeted agents.

16.
Genes Dev ; 30(15): 1704-17, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27516533

ABSTRACT

Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras-driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient (Atg7(-/-)) Kras-driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras-driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.


Subject(s)
Autophagy , Lung Neoplasms/metabolism , Nucleotides/metabolism , ras Proteins/metabolism , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cell Line, Tumor , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Deletion , Genetic Variation , Genome, Mitochondrial/genetics , Glutamine/pharmacology , Lung Neoplasms/physiopathology , Mice , Mitochondria/metabolism , Nucleosides/pharmacology , Oxidation-Reduction
17.
Article in English | MEDLINE | ID: mdl-27352800

ABSTRACT

The p53 protein plays a passive and an active role in stem cells. The transcriptional activities of p53 for cell-cycle arrest and DNA repair are largely turned off in stem cells, but there is some indication that long-term stem-cell viability may require other p53-regulated functions. When p53 is activated in stem cells, it stops cell division and promotes the commitment to a differentiation pathway and the formation of progenitor cells. In the absence of any p53 activity, stem-cell replication continues and mistakes in the normal epigenetic pathway occur at a higher probability. In the presence of a functionally active p53 protein, epigenetic stability is enforced and stem-cell replication is regulated by commitment to differentiation. Over a lifetime of an organism, stem-cell clones compete in a tissue niche for Darwinian replicative advantages and in doing so accumulate mutations that permit stem-cell replication. Mutations in the p53 gene give stem cells this advantage, increase the clonal stem-cell population, and lower the age at which cancers can occur. Li-Fraumeni patients that inherit p53 mutations develop tumors in a tissue-type-specific fashion at younger ages. Throughout the life of a Li-Fraumeni patient, the tumor types that arise occur in tissues where stem cells are active and cell division is most rapid. Thus, p53 mutations that are inherited or occur during developmental life act in stem cells of the mesenchymal and epithelial lineages, whereas p53 mutations that occur in progenitor or differentiated (somatic) cells later in life function in tissues of endodermal origins, indicating that p53 may function differently in different developmental lineages.


Subject(s)
Epigenesis, Genetic , Neoplasms/physiopathology , Stem Cells/cytology , Tumor Suppressor Protein p53/physiology , Cell Division , DNA Replication , Humans , Mutation , Neoplasms/genetics
18.
Oncotarget ; 7(8): 8783-96, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26840028

ABSTRACT

The tumor suppressor p53 plays a central role in tumor prevention. The E3 ubiquitin ligase MDM2 is the most critical negative regulator of p53, which binds to p53 and degrades p53 through ubiquitation. MDM2 itself is a transcriptional target of p53, and therefore, MDM2 forms a negative feedback loop with p53 to tightly regulate p53 levels and function. microRNAs (miRNAs) play a key role in regulation of gene expression. miRNA dysregulation plays an important role in tumorigenesis. In this study, we found that miRNA miR-1827 is a novel miRNA that targets MDM2 through binding to the 3'-UTR of MDM2 mRNA. miR-1827 negatively regulates MDM2, which in turn increases p53 protein levels to increase transcriptional activity of p53 and enhance p53-mediated stress responses, including apoptosis and senescence. Overexpression of miR-1827 suppresses the growth of xenograft colorectal tumors, whereas the miR-1827 inhibitor promotes tumor growth in mice in a largely p53-dependent manner. miR-1827 is frequently down-regulated in human colorectal cancer. Decreased miR-1827 expression is associated with high MDM2 expression and poor prognosis in colorectal cancer. In summary, our results reveal that miR-1827 is a novel miRNA that regulates p53 through targeting MDM2, and highlight an important role and the underlying mechanism of miR-1827 in tumor suppression.


Subject(s)
Cell Transformation, Neoplastic/pathology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , 3' Untranslated Regions , Animals , Apoptosis , Blotting, Western , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Immunoenzyme Techniques , Male , Mice , Mice, Inbred BALB C , Neoplasm Staging , Prognosis , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tissue Array Analysis , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
19.
Article in English | MEDLINE | ID: mdl-26642854

ABSTRACT

Mice with a homozygous p53 gene deletion develop thymic lymphomas by 9 wk of age. Using the sequence of the rearranged T-cell receptor gene from each clone of cells in the thymus, one can determine the number of independent transformation events. These tumors are oligoclonal, occurring at a frequency of 0.13-0.8 new cancer clones per day. By 20 wk only a few clones are detected, indicating competition among transformed cell clones. DNA sequencing of these tumors demonstrates a point mutation frequency of one per megabase and many genes that are consistently amplified or deleted in independent tumors. The tumors begin with an inherited p53 gene deletion. Next is a PTEN mutation in a stem cell or progenitor cell, before the rearrangement of the T-cell receptor. After that, the T-cell clone selects gene amplifications in cyclin D and cdk-6, and in Ikaros in the Notch pathway. Humans heterozygous for the p53 mutant gene in the germline (Li-Fraumeni syndrome) develop cancers at an early age. The penetrance of heterozygous p53 mutations is ∼93% of individuals developing tumors over their lives. At older ages the remaining 7% of this Li-Fraumeni population actually have a lower risk of developing tumors than the population at large with wild-type p53 genes.


Subject(s)
Germ-Line Mutation , Li-Fraumeni Syndrome/genetics , Lymphoma/genetics , Thymus Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cyclin D/genetics , Cyclin-Dependent Kinase 6/genetics , Gene Amplification , Gene Rearrangement, T-Lymphocyte , Genes, T-Cell Receptor , Heterozygote , Humans , Ikaros Transcription Factor/genetics , Mice , Neoplasms/genetics , PTEN Phosphohydrolase/genetics
20.
Cell Rep ; 13(9): 1895-908, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26655904

ABSTRACT

Oncocytomas are predominantly benign neoplasms possessing pathogenic mitochondrial mutations and accumulation of respiration-defective mitochondria, characteristics of unknown significance. Using exome and transcriptome sequencing, we identified two main subtypes of renal oncocytoma. Type 1 is diploid with CCND1 rearrangements, whereas type 2 is aneuploid with recurrent loss of chromosome 1, X or Y, and/or 14 and 21, which may proceed to more aggressive eosinophilic chromophobe renal cell carcinoma (ChRCC). Oncocytomas activate 5' adenosine monophosphate-activated protein kinase (AMPK) and Tp53 (p53) and display disruption of Golgi and autophagy/lysosome trafficking, events attributed to defective mitochondrial function. This suggests that the genetic defects in mitochondria activate a metabolic checkpoint, producing autophagy impairment and mitochondrial accumulation that limit tumor progression, revealing a novel tumor-suppressive mechanism for mitochondrial inhibition with metformin. Alleviation of this metabolic checkpoint in type 2 by p53 mutations may allow progression to eosinophilic ChRCC, indicating that they represent higher risk.


Subject(s)
Adenoma, Oxyphilic/pathology , Cell Transformation, Neoplastic , Kidney Neoplasms/pathology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adenoma, Oxyphilic/genetics , Adenoma, Oxyphilic/metabolism , Autophagy/drug effects , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cathepsins/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , DNA Copy Number Variations , Female , Golgi Apparatus/metabolism , Humans , Karyotype , Kidney/metabolism , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Male , Metformin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Sequence Analysis, RNA , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...