Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 145(22): 12284-12292, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37216226

ABSTRACT

Functionalizing molecules through the selective cleavage of carbon-carbon bonds is an attractive approach in synthetic chemistry. Despite recent advances in both transition-metal catalysis and radical chemistry, the selective cleavage of inert Csp3-Csp3 bonds in hydrocarbon feedstocks remains challenging. Examples reported in the literature typically involve substrates containing redox functional groups or highly strained molecules. In this article, we present a straightforward protocol for the cleavage and functionalization of Csp3-Csp3 bonds in alkylbenzenes using photoredox catalysis. Our method employs two distinct bond scission pathways. For substrates with tertiary benzylic substituents, a carbocation-coupled electron transfer mechanism is prevalent. For substrates with primary or secondary benzylic substituents, a triple single-electron oxidation cascade is applicable. Our strategy offers a practical means of cleaving inert Csp3-Csp3 bonds in molecules without any heteroatoms, resulting in primary, secondary, tertiary, and benzylic radical species.

SELECTION OF CITATIONS
SEARCH DETAIL