Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953449

ABSTRACT

In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications, such as drug delivery, sensors, and micro-reactors.

2.
Nat Commun ; 15(1): 1406, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365770

ABSTRACT

Chiral active particles (CAPs) are self-propelling particles that break time-reversal symmetry by orbiting or spinning, leading to intriguing behaviors. Here, we examined the dynamics of CAPs moving in 2D lattices of disk obstacles through active Brownian dynamics simulations and granular experiments with grass seeds. We find that the effective diffusivity of the CAPs is sensitive to the structure of the obstacle lattice, a feature absent in achiral active particles. We further studied the transport of CAPs in obstacle arrays under an external field and found a reentrant directional locking effect, which can be used to sort CAPs with different activities. Finally, we demonstrated that parallelogram lattices of obstacles without mirror symmetry can separate clockwise and counter-clockwise CAPs. The mechanisms of the above three novel phenomena are qualitatively explained. As such, our work provides a basis for designing chirality-based tools for single-cell diagnosis and separation, and active particle-based environmental sensors.

SELECTION OF CITATIONS
SEARCH DETAIL