Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Otolaryngol Head Neck Surg ; 170(1): 239-244, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37365963

ABSTRACT

OBJECTIVE: Decellularized tracheal grafts possess the biological cues necessary for tissue regeneration. However, conventional decellularization approaches to target the removal of all cell populations including chondrocytes lead to a loss of mechanical support. We have created a partially decellularized tracheal graft (PDTG) that preserves donor chondrocytes and the mechanical properties of the trachea. In this study, we measured PDTG chondrocyte retention with a murine microsurgical model. STUDY DESIGN: Murine in vivo time-point study. SETTING: Research Institute affiliated with Tertiary Pediatric Hospital. METHODS: PDTG was created using a sodium dodecyl sulfate protocol. Partially decellularized and syngeneic grafts were orthotopically implanted into female C57BL/6J mice. Grafts were recovered at 1, 3, and 6 months postimplant. Pre- and postimplant grafts were processed and analyzed via quantitative immunofluorescence. Chondrocytes (SOX9+, DAPI+) present in the host and graft cartilage was evaluated using ImageJ. RESULTS: Partial decellularization resulted in the maintenance of gross tracheal architecture with the removal of epithelial and submucosal structures on histology. All grafts demonstrated SOX9+ chondrocytes throughout the study time points. Chondrocytes in PDTG were lower at 6 months compared to preimplant and syngeneic controls. CONCLUSION: PDTG retained donor graft chondrocytes at all time points. However, PDTG exhibits a reduction in chondrocytes at 6 months. The impact of these histologic changes on cartilage extracellular matrix regeneration and repair remains unclear.


Subject(s)
Chondrocytes , Trachea , Humans , Child , Female , Mice , Animals , Chondrocytes/transplantation , Trachea/surgery , Tissue Engineering/methods , Mice, Inbred C57BL , Cartilage/transplantation , Tissue Scaffolds/chemistry
2.
Laryngoscope ; 134(3): 1155-1162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37578209

ABSTRACT

OBJECTIVE: Composite tracheal grafts (CTG) combining decellularized scaffolds with external biomaterial support have been shown to support host-derived neotissue formation. In this study, we examine the biocompatibility, graft epithelialization, vascularization, and patency of three prototype CTG using a mouse microsurgical model. STUDY DESIGN: Tracheal replacement, regenerative medicine, biocompatible airway splints, animal model. METHOD: CTG electrospun splints made by combining partially decellularized tracheal grafts (PDTG) with polyglycolic acid (PGA), poly(lactide-co-ε-caprolactone) (PLCL), or PLCL/PGA were orthotopically implanted in mice (N = 10/group). Tracheas were explanted two weeks post-implantation. Micro-Computed Tomography was conducted to assess for graft patency, and histological analysis was used to assess for epithelialization and neovascularization. RESULT: Most animals (greater than 80%) survived until the planned endpoint and did not exhibit respiratory symptoms. MicroCT confirmed the preservation of graft patency. Grossly, the PDTG component of CTG remained intact. Examining the electrospun component of CTG, PGA degraded significantly, while PLCL+PDTG and PLCL/PGA + PDTG maintained their structure. Microvasculature was observed across the surface of CTG and infiltrating the pores. There were no signs of excessive cellular infiltration or encapsulation. Graft microvasculature and epithelium appear similar in all groups, suggesting that CTG did not hinder endothelialization and epithelialization. CONCLUSION: We found that all electrospun nanofiber CTGs are biocompatible and did not affect graft patency, endothelialization and epithelialization. Future directions will explore methods to accelerate graft regeneration of CTG. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1155-1162, 2024.


Subject(s)
Nanofibers , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Trachea/surgery , X-Ray Microtomography , Polyesters/chemistry , Disease Models, Animal , Regeneration , Tissue Engineering/methods
3.
Laryngoscope ; 133(3): 512-520, 2023 03.
Article in English | MEDLINE | ID: mdl-35612419

ABSTRACT

OBJECTIVES/HYPOTHESIS: Partially decellularized tracheal scaffolds have emerged as a potential solution for long-segment tracheal defects. These grafts have exhibited regenerative capacity and the preservation of native mechanical properties resulting from the elimination of all highly immunogenic cell types while sparing weakly immunogenic cartilage. With partial decellularization, new considerations must be made about the viability of preserved chondrocytes. In this study, we propose a multimodal approach for quantifying chondrocyte viability for airway tissue engineering. METHODS: Tracheal segments (5 mm) were harvested from C57BL/6 mice, and immediately stored in phosphate-buffered saline at -20°C (PBS-20) or biobanked via cryopreservation. Stored and control (fresh) tracheal grafts were implanted as syngeneic tracheal grafts (STG) for 3 months. STG was scanned with micro-computed tomography (µCT) in vivo. STG subjected to different conditions (fresh, PBS-20, or biobanked) were characterized with live/dead assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and von Kossa staining. RESULTS: Live/dead assay detected higher chondrocyte viability in biobanked conditions compared to PBS-20. TUNEL staining indicated that storage conditions did not alter the proportion of apoptotic cells. Biobanking exhibited a lower calcification area than PBS-20 in 3-month post-implanted grafts. Higher radiographic density (Hounsfield units) measured by µCT correlated with more calcification within the tracheal cartilage. CONCLUSIONS: We propose a strategy to assess chondrocyte viability that integrates with vivo imaging and histologic techniques, leveraging their respective strengths and weaknesses. These techniques will support the rational design of partially decellularized tracheal scaffolds. LEVEL OF EVIDENCE: N/A Laryngoscope, 133:512-520, 2023.


Subject(s)
Chondrocytes , Tissue Engineering , Animals , Mice , Chondrocytes/transplantation , Tissue Engineering/methods , Biological Specimen Banks , X-Ray Microtomography , Mice, Inbred C57BL , Trachea/surgery , Trachea/transplantation , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL