Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38600616

ABSTRACT

Some synthetic dyes are fraudulently added into spices to appeal visually to consumers. Food regulations in several countries, including the United States, Australia, Japan and the European Union, strictly prohibit the use of unauthorised synthetic dyes in food. Nevertheless, illegal practices persist, where spices contaminated with potentially carcinogenic dyes have been documented, posing potential health risks to consumers. In the present study, 14 synthetic dyes were investigated through liquid chromatography/tandem mass spectrometry in 252 commercially available spices in the Singapore market. In 18 out of these (7.1%) at least 1 illegal dye was detected at concentrations ranging from 0.010 to 114 mg/kg. Besides potential health risks, presence of these adulterants also reflects the economic motivations behind their fraudulent use. Findings in the present study further emphasise the need for increased public awareness, stricter enforcement, and continuous monitoring of illegal synthetic dyes in spices to ensure Singapore's food safety.

2.
Foods ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397488

ABSTRACT

A total diet study is often used to evaluate a population's baseline dietary exposure to chemical hazards from across the diet. In 2021-2023, Singapore carried out a TDS, and this article presents an overview of the study design and methodological selections in Singapore's TDS, as well as its relevance to ensuring food safety. A food consumption survey was conducted on Singapore citizens and permanent residents, where food consumption patterns of the Singapore population were identified. The selection of chemical hazards and foods for inclusion in Singapore's TDS, as well as principal considerations on sampling, food preparation, and analytical testing are discussed. Commonly consumed foods by the Singapore population in food categories such as grain and grain-based products, meat and meat products, fish and seafood, vegetables, fruits, milk and dairy products were included in this study, and mean concentrations of chemicals tested in each food category were reported, with food categories possessing higher levels identified. Future work will include dietary exposure assessments for the population and analysis of the contributions by food and cooking method.

3.
Article in English | MEDLINE | ID: mdl-38248529

ABSTRACT

There is a need to study the characteristics of outbreaks via Singapore's outbreak surveillance system to understand and identify the gaps in food safety for targeted policy interventions due to the increasing trend in gastroenteritis outbreaks and consequential increase in foodborne-related deaths and economic burden on public health systems worldwide. A total of 171 gastroenteritis outbreaks were investigated in Singapore from January 2018 to December 2021. This study analyzed the annual trend of investigated gastroenteritis outbreaks, the proportion of outbreaks by implicated sources of food, and the proportion of the type of pathogens identified from human cases, food samples, and environmental swabs collected from outbreak investigations. Among the foodborne gastroenteritis outbreaks (n = 121) investigated in Singapore, approximately 42.1% of the outbreaks had food prepared by caterers, 14.9% by restaurants, and 12.4% had food prepared by in-house kitchens. Clostridium perfringens and Salmonella were the most common causative pathogens in foodborne outbreaks throughout the analysis period. The food samples and environmental swabs collected were mostly detected for Bacillus cereus. Norovirus was the most common causative pathogen in non-foodborne outbreaks and was mainly attributable to preschools. This highlights the importance of monitoring and educating the catering industry and preschools to prevent future outbreaks.


Subject(s)
Bacillus cereus , Gastroenteritis , Child, Preschool , Humans , Singapore/epidemiology , Clostridium perfringens , Disease Outbreaks , Gastroenteritis/epidemiology
4.
Article in English | MEDLINE | ID: mdl-38295297

ABSTRACT

In this study, an advanced ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed for quantifying ethoxyquin (EQ). The approach employed a distinctive antioxidant added extraction step designed to prevent ethoxyquin decomposition and maintain analytical precision. This method effectively determines residue levels of EQ in eggs, processed egg products, poultry muscle, salmon, and liquid milk. The method was shown to have a limit of quantitation (LOQ) for eggs, milk, salmon, and chicken muscle of 1.5 µg/kg, 1.9 µg/kg, 2.1 µg/kg, and 1.2 µg/kg, respectively. The recoveries of EQ ranged from 79.2% to 107.6%, with a relative standard deviation (RSD) below 8.4%. A surveillance study for the presence of EQ in different types of eggs and poultry muscle available in Singapore was conducted and a total of 140 samples were tested. EQ residues in all samples were found to be below the U.S. Food and Drug Administration (FDA) MRLs of 500 µg/kg. Some samples of salted and preserved eggs from China were detected with higher concentration of EQ.


Subject(s)
Ethoxyquin , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Ethoxyquin/analysis , Chromatography, Liquid/methods , Poultry , Singapore , Salmon
5.
Foods ; 12(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569240

ABSTRACT

Accurate methods for meat speciation and quantification are essential for ensuring the supply of safe and wholesome meat and composite products with animal origins to negate the potential associated hazards, aid classification of consignments at the import control system, and thwart food fraud committed for financial gain. To better enhance meat safety control and combat food fraud, this study developed two duplex real-time polymerase chain reaction (real-time PCR) systems specifically designed for chicken, pork, sheep, and beef, using single-copy, chromosomally encoded, species-specific gene sequences to accurately measure the content of each meat type in meat products. DNA extracted from the raw and boiled reference materials prepared in varying proportions (ranging from 1% to 75%) were used in the development of the duplex assay to derive calibration factors to determine the meat content in different meat products. The method was further validated using proficiency test samples and market monitoring samples. Our findings showed that this method exhibits high specificity and sensitivity, with a significant accuracy range of 0.14% to 24.07% in quantifying the four meat types in both raw and processed meat products. Validation results further confirmed the effectiveness of our method in accurately quantifying meat content. Thus, we have demonstrated the duplex qPCR assays as promising approaches for implementation in routine analysis to strengthen meat safety control systems and combat meat fraud, thereby safeguarding consumer health and trust in the meat industry.

6.
Microorganisms ; 11(4)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37110268

ABSTRACT

Rapid and robust detection assays for Salmonella Enteritidis (SE) in shell eggs are essential to enable a quick testing turnaround time (TAT) at the earliest checkpoint and to ensure effective food safety control. Real-time polymerase chain reaction (qPCR) assays provide a workaround for the protracted lead times associated with conventional Salmonella diagnostic testing. However, DNA-based analysis cannot reliably discriminate between signals from viable and dead bacteria. We developed a strategy based on an SE qPCR assay that can be integrated into system testing to accelerate the detection of viable SE in egg-enriched cultures and verify the yielded SE isolates. The specificity of the assay was evaluated against 89 Salmonella strains, and SE was accurately identified in every instance. To define the indicator for a viable bacteria readout, viable or heat-inactivated SE were spiked into shell egg contents to generate post-enriched, artificially contaminated cultures to establish the quantification cycle (Cq) for viable SE. Our study has demonstrated that this technique could potentially be applied to accurately identify viable SE during the screening stage of naturally contaminated shell eggs following enrichment to provide an early alert, and that it consistently identified the serotypes of SE isolates in a shorter time than conventional testing.

7.
Foods ; 11(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36140910

ABSTRACT

The consumption of processed foods is increasingly widespread and could have an impact on diet quality and health. Understanding the factors influencing people's eating habits is useful for assessing such impact. There are limited data on the consumption patterns of processed foods and associated factors influencing the dietary patterns in Singapore. This cross-sectional study based on a food frequency questionnaire aimed to examine how the consumption of processed foods among 2079 Singapore residents aged 18 to 89 years varies with sociodemographic factors. The analysis of the consumption by processed food groups showed that the studied factors, i.e., age, gender, ethnicity, housing and health status, all contributed to differences in processed food consumption to varying extents, with ethnicity being the key factor driving the variation. Such differences were also confirmed to a limited degree by determining another measure of consumption, i.e., a processed food variety score. The findings in this study could inform further work in relation to dietary risks.

8.
Arch Toxicol ; 96(5): 1455-1471, 2022 05.
Article in English | MEDLINE | ID: mdl-35226136

ABSTRACT

The micronucleus (MN) assay is widely used as part of a battery of tests applied to evaluate the genotoxic potential of chemicals, including new food additives and novel food ingredients. Micronucleus assays typically utilise homogenous in vitro cell lines which poorly recapitulate the physiology, biochemistry and genomic events in the gut, the site of first contact for ingested materials. Here we have adapted and validated the MN endpoint assay protocol for use with complex 3D reconstructed intestinal microtissues; we have named this new protocol the reconstructed intestine micronucleus cytome (RICyt) assay. Our data suggest the commercial 3D microtissues replicate the physiological, biochemical and genomic responses of native human small intestine to exogenous compounds. Tissues were shown to maintain log-phase proliferation throughout the period of exposure and expressed low background MN. Analysis using the RICyt assay protocol revealed the presence of diverse cell types and nuclear anomalies (cytome) in addition to MN, indicating evidence for comprehensive DNA damage and mode(s) of cell death reported by the assay. The assay correctly identified and discriminated direct-acting clastogen, aneugen and clastogen requiring exogenous metabolic activation, and a non-genotoxic chemical. We are confident that the genotoxic response in the 3D microtissues more closely resembles the native tissues due to the inherent tissue architecture, surface area, barrier effects and tissue matrix interactions. This proof-of-concept study highlights the RICyt MN cytome assay in 3D reconstructed intestinal microtissues is a promising tool for applications in predictive toxicology.


Subject(s)
DNA Damage , Micronuclei, Chromosome-Defective , Aneugens , Humans , Micronucleus Tests/methods , Mutagens/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...