Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 23068, 2024 10 04.
Article in English | MEDLINE | ID: mdl-39367021

ABSTRACT

This report describes the development and characterization of a comprehensive collection of CHO cell glycosylation mutants with significant potential for advancing glycobiology and biotechnology. EPO-Fc and trastuzumab, two model molecules, were produced using these mutants to assess the effects of mutated glycogenes, and LC-MS/MS analysis was employed to quantitatively analyse their N-glycans. EPO-Fc exhibited exclusively homogeneous Man9 glycans only when nearly all α-mannosidases in the genome were inactivated, except lysosomal MAN2B1. Some mutants lacking GnT-I activity produce mostly Man5 N-glycans, while their O-glycan and glycolipid profiles can differ due to other mutations in the cell. GnT-II deficiency prevents GnT-V from adding GlcNAc to the core N-glycan, resulting in branches attaching solely to the α1,3-linked mannose, leaving the α1,6-linked mannose free. The mutant-produced antibody's single-branched glycan contains more sialic acid than the dual-branched glycans produced in CHO-K1 cells. Trastuzumab produced in these mutants provided insights into how Fc N-glycans impact the antibody's interaction with FcγR1 and FcγR2a, FcγR3a, and their influence on antibody-dependent cellular cytotoxicity (ADCC). In the study of Fc glycans in Fc-FcγR1 and FcγR2a interactions, we observed a consistent glycan-related impact on binding to both receptors, indicating a common interaction mechanism between Fc glycans and both FcγRI and FcγRIIa. CHO mutants produced trimeric gp120 demonstrated distinct reactivity with multiple broadly neutralizing anti-HIV antibodies, confirming the involvement of gp120 glycans in interactions with specific broadly neutralizing antibodies. Finally, one of the mutants produced human ß-glucocerebrosidase with uniform Man5 N-glycans, showcasing its potential for glycoengineered production and enhancement in therapeutic efficacy.


Subject(s)
Cricetulus , Glycomics , Mutation , Polysaccharides , Trastuzumab , CHO Cells , Animals , Glycosylation , Polysaccharides/metabolism , Glycomics/methods , Trastuzumab/metabolism , Biotechnology/methods , Humans , Tandem Mass Spectrometry
2.
MAbs ; 11(5): 965-976, 2019 07.
Article in English | MEDLINE | ID: mdl-31043114

ABSTRACT

Chinese hamster ovary (CHO) cells are the biopharmaceutical industry's primary means of manufacturing therapeutic proteins, including monoclonal antibodies. The major challenge in cell line development for the production of recombinant biopharmaceuticals lies in generating and isolating rare high-producing stable clones, amongst thousands of low-producing or unstable clones, in a short period of time. One approach to accomplish this is to use the glutamine synthetase (GS) selection system, together with the GS inhibitor, methionine sulfoximine (MSX). However, MSX can only increase protein productivity to a limited extent. Often productivity will drop when MSX is removed from the system. We evaluated a congenital GS mutation, R324C, which causes glutamine deficiency in human as an attenuated selection marker for CHO cell line generation. We also created a panel of GS mutants with diminished GS activity. Our results demonstrated that using attenuated GS mutants as selection markers significantly increased antibody production of stably transfected pools. Furthermore, these stably transfected pools sustained high productivity levels for an extended period of time, whereas cells transfected with wild-type GS lost considerable protein productivity over time, particularly after MSX was removed. In summary, the use of attenuated GS as a selection marker in CHO cell line development bypasses the need for MSX, and generates stable clones with significantly higher antibody productivity.Abbreviations: CHO: Chinese hamster ovary; CMV: Cytomegalovirus; DHFR: Dihydrofolate reductase; GFP: Green fluorescent protein; GOI: gene-of-interest; GS: Glutamine synthetase; IRES: internal ribosomal entry site; MSX: Methionine sulfoximine; MTX: Methotrexate; psGS: pseudoGS; RVDs: Repeated variable di-residues; TALENs: transcription activator-like effector nucleases; VCD: Viable cell density; ZFNs: zinc finger nucleases.


Subject(s)
Antibodies, Monoclonal/biosynthesis , CHO Cells/immunology , Glutamate-Ammonia Ligase/genetics , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , CHO Cells/enzymology , Cricetulus , Humans , Methionine Sulfoximine/pharmacology , Transfection
3.
MAbs ; 10(5): 693-711, 2018 07.
Article in English | MEDLINE | ID: mdl-29733746

ABSTRACT

Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Neoplasms/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity/drug effects , Fucose/metabolism , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/metabolism , Immunoglobulin G/therapeutic use , Neoplasms/drug therapy , Protein Binding , Receptors, IgG/immunology , Receptors, IgG/metabolism
4.
Biotechnol J ; 11(3): 399-414, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26471004

ABSTRACT

Removal of core fucose from N-glycans attached to human IgG1 significantly enhances its affinity for the receptor FcγRIII and thereby dramatically improves its antibody-dependent cellular cytotoxicity activity. While previous works have shown that inactivation of fucosyltransferase 8 results in mutants capable of producing fucose-free antibodies, we report here the use of genome editing techniques, namely ZFNs, TALENs and the CRISPR-Cas9, to inactivate the GDP-fucose transporter (SLC35C1) in Chinese hamster ovary (CHO) cells. A FACS approach coupled with a fucose-specific lectin was developed to rapidly isolate SLC35C1-deficient cells. Mass spectrometry analysis showed that both EPO-Fc produced in mutants arising from CHO-K1 and anti-Her2 antibody produced in mutants arising from a pre-existing antibody-producing CHO-HER line lacked core fucose. Lack of functional SLC35C1 in these cells does not affect cell growth or antibody productivity. Our data demonstrate that inactivating Slc35c1 gene represents an alternative approach to generate CHO cells for production of fucose-free antibodies.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Erythropoietin/genetics , Fucose/chemistry , Gene Silencing , Monosaccharide Transport Proteins/genetics , Receptors, IgG/genetics , Animals , CHO Cells , CRISPR-Cas Systems , Cricetinae , Cricetulus , Erythropoietin/metabolism , Flow Cytometry , Humans , Mutation , Receptors, IgG/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Zinc Fingers
5.
Methods Mol Biol ; 1321: 323-33, 2015.
Article in English | MEDLINE | ID: mdl-26082232

ABSTRACT

The degree of sialylation of therapeutic glycoproteins affects its circulatory half-life and efficacy because incompletely sialylated glycoproteins are cleared from circulation by asialoglycoprotein receptors present in the liver cells. Mammalian expression systems, often employed in the production of these glycoprotein drugs, produce heterogeneously sialylated products. Here, we describe how to produce highly sialylated glycoproteins using a Chinese hamster ovary (CHO) cell glycosylation mutant called CHO-gmt4 with human erythropoietin (EPO) as a model glycoprotein. The protocol describes how to isolate and characterize the CHO glycosylation mutants and how to assess the sialylation of the recombinant protein using isoelectric focusing (IEF). It further describes how to inactivate the dihydrofolate reductase (DHFR) gene in these cells using zinc finger nuclease (ZFN) technology to enable gene amplification and the generation of stable cell lines producing highly sialylated EPO.


Subject(s)
Glycoproteins/genetics , Mutation/genetics , Plant Lectins/genetics , Recombinant Proteins/genetics , Animals , CHO Cells , Cell Line , Cricetulus , Erythropoietin/genetics , Gene Amplification/genetics , Glycosylation , Humans , Tetrahydrofolate Dehydrogenase/genetics
6.
Bioengineered ; 5(4): 269­73, 2014.
Article in English | MEDLINE | ID: mdl-24911584

ABSTRACT

Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors.


Subject(s)
Cell Engineering , Erythropoietin/genetics , Erythropoietin/metabolism , N-Acetylglucosaminyltransferases/metabolism , N-Acetylneuraminic Acid/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Animals , Humans
7.
Biotechnol J ; 9(1): 100-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24166780

ABSTRACT

Therapeutic glycoprotein drugs require a high degree of sialylation of their N-glycans for a better circulatory half-life that results in greater efficacy. It has been demonstrated that Chinese hamster ovary (CHO) glycosylation mutants lacking N-acetylglucosaminyltransferase I (GnT I), when restored by introduction of a functional GnT I, produced highly sialylated erythropoietin (EPO). We have now further engineered one of such mutants, JW152, by inactivating the dihydrofolate reductase (DHFR) gene to allow for the amplification of the EPO gene with methotrexate (MTX). Several MTX-amplified clones maintained the ability to produce highly sialylated EPO and one was selected for culture in a perfusion bioreactor that is used in an existing industrial EPO-production bioprocess. Extensive characterization of the EPO produced was performed using total sialic quantification, HPAEC-PAD and MALDI-TOF MS analyses. Our results demonstrated that the EPO produced by the mutant line exhibits superior sialylation compared to the commercially used EPO-producing CHO clone cultured under the same conditions. Therefore, this mutant has the industrial potential for producing highly sialylated recombinant EPO and potentially other recombinant glycoprotein therapeutics.


Subject(s)
Cell Engineering , Erythropoietin/genetics , Erythropoietin/metabolism , N-Acetylglucosaminyltransferases/metabolism , N-Acetylneuraminic Acid/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Animals , Bioreactors , CHO Cells , Cricetinae , Cricetulus , Erythropoietin/chemistry , Gene Amplification/drug effects , Glycosylation , Half-Life , Humans , Methotrexate/pharmacology , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tetrahydrofolate Dehydrogenase/metabolism
8.
Bioengineered ; 4(2): 90-4, 2013.
Article in English | MEDLINE | ID: mdl-22989990

ABSTRACT

Engineered zinc-finger nucleases (ZFNs) are powerful tools for creating double-stranded-breaks (DSBs) in genomic DNA in a site-specific manner. These DSBs generated by ZFNs can be repaired by homology-directed repair or nonhomologous end joining, in which the latter can be exploited to generate insertion or deletion mutants. Based on published literature, we designed a pair of zinc-finger nucleases and inactivated the GDP-fucose transporter gene (Slc35c1) in a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter gene (Slc35a1). The resulting mutant cell line, CHO-gmt5, lacks functional GDP-fucose transporter and CMP-sialic acid transporter. As a result, these cells can only produce asialylated and afucosylated glycoproteins. It is now widely recognized that removal of the core fucose from the N-glycans attached to Asn(297) of human IgG1 significantly enhances its binding to its receptor, FcγRIIIa, and thereby dramatically improves antibody-dependent cellular cytotoxicity (ADCC). Recent reports showed that removal of sialic acid from IgG1 also enhances ADCC. Therefore, CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC. These cells show comparable growth rate to wild type CHO-K1 cells and uncompromised transfection efficiency, which make them desirable for use as a production line.


Subject(s)
Antibodies/metabolism , Fucose/chemistry , N-Acetylneuraminic Acid/chemistry , Recombinant Proteins/metabolism , Animals , Antibodies/chemistry , Antibodies/genetics , CHO Cells , Cricetinae , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
9.
Adv Biochem Eng Biotechnol ; 131: 63-87, 2013.
Article in English | MEDLINE | ID: mdl-23142953

ABSTRACT

CHO glycosylation mutants, pioneered by Stanley and co-workers, have proven to be valuable tools in glycobiology and biopharmaceutical research. Here we aim to provide a summary of our efforts to isolate industrially applicable CHO glycosylation mutants, termed CHO-gmt cells, using cytotoxic lectins and zinc-finger nuclease technology. The genetic defects in the glycosylation machinery in these cells lead to the production of recombinant glycoproteins with consistent and unique glycan structures. In addition, these mutant cells can be easily adapted to serum-free medium in suspension cultures, the condition used by the biotech industry for large-scale production of recombinant therapeutics. In light of the critical impact of glycosylation on biopharmaceutical performances, namely, safety and efficacy, the CHO-gmt lines have enormous potential in producing glycoprotein therapeutics with optimal glycosylation profiles, thus, representing a panel of ideal host cell lines for producing recombinant biopharmaceuticals with improved safety profiles and enhanced efficacy.


Subject(s)
Cell Engineering/methods , Glycoproteins/biosynthesis , Lectins/toxicity , Mutation , Phytohemagglutinins/toxicity , Animals , Biological Factors/biosynthesis , Biological Factors/genetics , CHO Cells , Cricetulus , Deoxyribonucleases/metabolism , Glucosylceramidase/biosynthesis , Glucosylceramidase/genetics , Glycoproteins/genetics , Glycosylation , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/genetics , Polysaccharides/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
10.
Glycobiology ; 22(7): 897-911, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22492235

ABSTRACT

The GDP-fucose transporter SLC35C1 critically regulates the fucosylation of glycans. Elucidation of its structure-function relationships remains a challenge due to the lack of an appropriate mutant cell line. Here we report a novel Chinese hamster ovary (CHO) mutant, CHO-gmt5, generated by the zinc-finger nuclease technology, in which the Slc35c1 gene was knocked out from a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter (CST) gene (Slc35a1). Consequently, CHO-gmt5 harbors double genetic defects in Slc35a1 and Slc35c1 and produces N-glycans deficient in both sialic acid and fucose. The structure-function relationships of SLC35C1 were studied using CHO-gmt5 cells. In contrast to the CST and UDP-galactose transporter, the C-terminal tail of SLC35C1 is not required for its Golgi localization but is essential for generating glycans that are recognized by a fucose-binding lectin, Aleuria aurantia lectin (AAL), suggesting an important role in the transport activity of SLC35C1. Furthermore, we found that this impact can be independently contributed by a cluster of three lysine residues and a Glu-Met (EM) sequence within the C terminus. We also showed that the conserved glycine residues at positions 180 and 277 of SLC35C1 have significant impacts on AAL binding to CHO-gmt5 cells, suggesting that these conserved glycine residues are required for the transport activity of Slc35 proteins. The absence of sialic acid and fucose on Fc N-glycan has been independently shown to enhance the antibody-dependent cellular cytotoxicity (ADCC) effect. By combining these features into one cell line, we postulate that CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC effect.


Subject(s)
Monosaccharide Transport Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Carbohydrate Conformation , Carbohydrate Sequence , Conserved Sequence , Cricetinae , Glycosylation , Golgi Apparatus/metabolism , HeLa Cells , Humans , INDEL Mutation , Lectins/chemistry , Membrane Glycoproteins/metabolism , Molecular Sequence Data , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Mutagenesis , Open Reading Frames , Peanut Agglutinin/chemistry , Protein Binding , Protein Structure, Tertiary , Protein Transport , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staining and Labeling , Zinc Fingers
11.
Exp Parasitol ; 129(4): 337-45, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21978449

ABSTRACT

Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major's tropism for cutaneous infections.


Subject(s)
Gene Expression/physiology , Leishmania donovani/metabolism , Leishmaniasis, Visceral/parasitology , Nucleotide Transport Proteins/metabolism , Viscera/parasitology , Animals , Cell Line , Female , Golgi Apparatus/metabolism , Leishmania donovani/genetics , Leishmania donovani/pathogenicity , Leishmania major/genetics , Leishmania major/metabolism , Leishmania major/pathogenicity , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Nucleotide Transport Proteins/genetics , Virulence
12.
Metab Eng ; 12(4): 360-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20346410

ABSTRACT

A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identification of nine different single base pair mutations. Some mutations result in a premature stop codon whereas others cause a single amino acid substitution in the GnT I protein. Interestingly, expression of the normal GnT I cDNA in mutant cells resulted in enhanced sialylation of N-glycans. The sialylation of recombinant erythropoietin (EPO) produced in mutant cells that were co-transfected with GnT I was enhanced compared to that of EPO produced in wild type CHO cells. The enhanced sialylation of EPO produced by JW152 cells in the presence of GnT I over CHO-K1 cells is a result of increased sialylated glycan structures with higher antennary branching. These findings represent a new strategy that may be utilized by the biotechnology industry to produce highly sialylated therapeutic glycoproteins.


Subject(s)
Erythropoietin/metabolism , N-Acetylglucosaminyltransferases/genetics , N-Acetylneuraminic Acid/metabolism , Plant Lectins/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , Point Mutation , Recombinant Proteins
13.
Glycobiology ; 20(6): 689-701, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20181793

ABSTRACT

The Golgi CMP-sialic acid transporter (CST) is a type III transmembrane protein with 10 transmembrane domains that are linked by eight hydrophilic loops. To investigate the function of these hydrophilic loops, the green fluorescent protein (GFP) was inserted into each loop of the transporter. Expression and localization of the resulting CST-GFP fusion proteins were confirmed by analyzing the fluorescence of GFP. The transport activity of the CST-GFP proteins was analyzed by a previously described erythropoietin/isoelectric focusing assay in CST-deficient MAR-11 cells. Interruption of the second and fourth lumenal loops and the fourth cytosolic loop of CST with GFP resulted in complete or partial loss of transport activity. Regions in these loops that play crucial roles in CST's activity were identified by Gly substitutions. Single amino acid substitution experiments revealed that Lys(272) of the fourth loop on the cytosolic side of CST is essential for transport activity. Mutation of the conserved Lys residue (Lys(297)) in the UDP-galactose transporter (UGT) also resulted in a complete loss of its activity. Point mutations of highly conserved amino acid residues in the loop regions identified Leu(136) of CST as essential for its activity. However, mutation of the conserved Leu residue in UGT (Leu(160)) did not affect the transport activity of UGT. Finally, mutation of Leu(224) in UGT completely inactivated the activity of UGT, although mutation of its conserved counterpart in CST, Leu(199), did not have any effect on CST. This study provides a structure-function analysis of the loop regions in CST and UGT.


Subject(s)
Cytidine Monophosphate N-Acetylneuraminic Acid/metabolism , Leucine/metabolism , Lysine/metabolism , Nucleotide Transport Proteins/chemistry , Nucleotide Transport Proteins/metabolism , Uridine Diphosphate Galactose/chemistry , Uridine Diphosphate Galactose/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Leucine/genetics , Lysine/genetics , Mutation , Nucleotide Transport Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Uridine Diphosphate Galactose/genetics , Water/chemistry , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL