Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Virus Res ; 345: 199371, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38621598

ABSTRACT

BACKGROUND: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has lasted for three years. Coinfection with seasonal influenza may occur resulting in more severe diseases. The interaction between these two viruses for infection and the effect of antiviral treatment remains unclear. METHODS: A SARS-CoV-2 and influenza H1N1 coinfection model on Calu-3 cell line was established, upon which the simultaneous and sequential coinfection was evaluated by comparing the viral load. The efficacy of molnupiravir and baloxavir against individual virus and coinfection were also studied. RESULTS: The replication of SARS-CoV-2 was significantly interfered when the influenza virus was infected simultaneously or in advance (p < 0.05). On the contrary, the replication of the influenza virus was not affected by the SARS-CoV-2. Molnupiravir monotherapy had significant inhibitory effect on SARS-CoV-2 when the concentration reached to 6.25 µM but did not show any significant anti-influenza activity. Baloxavir was effective against influenza within the dosage range and showed significant effect of anti-SARS-CoV-2 at 16 µM. In the treatment of coinfection, molnupiravir had significant effect for SARS-CoV-2 from 6.25 µM to 100 µM and inhibited H1N1 at 100 µM (p < 0.05). The tested dosage range of baloxavir can inhibit H1N1 significantly (p < 0.05), while at the highest concentration of baloxavir did not further inhibit SARS-CoV-2, and the replication of SARS-CoV-2 significantly increased in lower concentrations. Combination treatment can effectively inhibit influenza H1N1 and SARS-CoV-2 replication during coinfection. Compared with molnupiravir or baloxavir monotherapy, combination therapy was more effective in less dosage to inhibit the replication of both viruses. CONCLUSIONS: In coinfection, the replication of SARS-CoV-2 would be interfered by influenza H1N1. Compared with molnupiravir or baloxavir monotherapy, treatment with a combination of molnupiravir and baloxavir should be considered for early treatment in patients with SARS-CoV-2 and influenza coinfection.

2.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38675747

ABSTRACT

BACKGROUND: Neutralizing antibody level wanes with time after COVID-19 vaccination. We aimed to study the relationship between baseline gut microbiota and immunogenicity after three doses of CoronaVac. METHODS: This was a prospective cohort study recruiting three-dose CoronaVac recipients from two centers in Hong Kong. Blood samples were collected at baseline and one year post-first dose for virus microneutralization (vMN) assays to determine neutralization titers. The primary outcome was high immune response (defined as with vMN titer ≥ 40). Shotgun DNA metagenomic sequencing of baseline fecal samples identified potential bacterial species and metabolic pathways using Linear Discriminant Analysis Effect Size (LEfSe) analysis. Univariate and multivariable logistic regression models were used to identify high response predictors. RESULTS: In total, 36 subjects were recruited (median age: 52.7 years [IQR: 47.9-56.4]; male: 14 [38.9%]), and 18 had low immune response at one year post-first dose vaccination. Eubacterium rectale (log10LDA score = 4.15, p = 0.001; relative abundance of 1.4% vs. 0, p = 0.002), Collinsella aerofaciens (log10LDA score = 3.31, p = 0.037; 0.39% vs. 0.18%, p = 0.038), and Streptococcus salivarius (log10LDA score = 2.79, p = 0.021; 0.05% vs. 0.02%, p = 0.022) were enriched in low responders. The aOR of high immune response with E. rectale, C. aerofaciens, and S. salivarius was 0.03 (95% CI: 9.56 × 10-4-0.32), 0.03 (95% CI: 4.47 × 10-4-0.59), and 10.19 (95% CI: 0.81-323.88), respectively. S. salivarius had a positive correlation with pathways enriched in high responders like incomplete reductive TCA cycle (log10LDA score = 2.23). C. aerofaciens similarly correlated with amino acid biosynthesis-related pathways. These pathways all showed anti-inflammation functions. CONCLUSION: E. rectale,C. aerofaciens, and S. salivarius correlated with poorer long-term immunogenicity following three doses of CoronaVac.

3.
Epidemiol Infect ; 152: e60, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584132

ABSTRACT

Previous studies suggest that influenza virus infection may provide temporary non-specific immunity and hence lower the risk of non-influenza respiratory virus infection. In a randomized controlled trial of influenza vaccination, 1 330 children were followed-up in 2009-2011. Respiratory swabs were collected when they reported acute respiratory illness and tested against influenza and other respiratory viruses. We used Poisson regression to compare the incidence of non-influenza respiratory virus infection before and after influenza virus infection. Based on 52 children with influenza B virus infection, the incidence rate ratio (IRR) of non-influenza respiratory virus infection after influenza virus infection was 0.47 (95% confidence interval: 0.27-0.82) compared with before infection. Simulation suggested that this IRR was 0.87 if the temporary protection did not exist. We identified a decreased risk of non-influenza respiratory virus infection after influenza B virus infection in children. Further investigation is needed to determine if this decreased risk could be attributed to temporary non-specific immunity acquired from influenza virus infection.


Subject(s)
Herpesviridae Infections , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Influenza, Human/epidemiology , Influenza B virus , Respiratory Tract Infections/epidemiology
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473829

ABSTRACT

CoronaVac immunogenicity decreases with time, and we aimed to investigate whether gut microbiota associate with longer-term immunogenicity of CoronaVac. This was a prospective cohort study recruiting two-dose CoronaVac recipients from three centres in Hong Kong. We collected blood samples at baseline and day 180 after the first dose and used chemiluminescence immunoassay to test for neutralizing antibodies (NAbs) against the receptor-binding domain (RBD) of wild-type SARS-CoV-2 virus. We performed shotgun metagenomic sequencing performed on baseline stool samples. The primary outcome was the NAb seroconversion rate (seropositivity defined as NAb ≥ 15AU/mL) at day 180. Linear discriminant analysis [LDA] effect size analysis was used to identify putative bacterial species and metabolic pathways. A univariate logistic regression model was used to derive the odds ratio (OR) of seropositivity with bacterial species. Of 119 CoronaVac recipients (median age: 53.4 years [IQR: 47.8-61.3]; male: 39 [32.8%]), only 8 (6.7%) remained seropositive at 6 months after vaccination. Bacteroides uniformis (log10LDA score = 4.39) and Bacteroides eggerthii (log10LDA score = 3.89) were significantly enriched in seropositive than seronegative participants. Seropositivity was associated with B. eggerthii (OR: 5.73; 95% CI: 1.32-29.55; p = 0.022) and B. uniformis with borderline significance (OR: 3.27; 95% CI: 0.73-14.72; p = 0.110). Additionally, B. uniformis was positively correlated with most enriched metabolic pathways in seropositive vaccinees, including the superpathway of adenosine nucleotide de novo biosynthesis I (log10LDA score = 2.88) and II (log10LDA score = 2.91), as well as pathways related to vitamin B biosynthesis, all of which are known to promote immune functions. In conclusion, certain gut bacterial species (B. eggerthii and B. uniformis) and metabolic pathways were associated with longer-term CoronaVac immunogenicity.


Subject(s)
COVID-19 Vaccines , Gastrointestinal Microbiome , Vaccines, Inactivated , Humans , Male , Middle Aged , Prospective Studies , Adenosine , Antibodies, Neutralizing , Antibodies, Viral
5.
J Med Virol ; 95(12): e29313, 2023 12.
Article in English | MEDLINE | ID: mdl-38100626

ABSTRACT

Autoantibodies against angiotensin-converting enzyme 2 (ACE2) are frequently reported in patients during coronavirus disease 2019 (COVID-19) with evidence for a pathogenic role in severe infection. However, little is known of the prevalence or clinical significance of ACE2 autoantibodies in late convalescence or following COVID-19 vaccination. In this study, we measured ACE2 autoantibodies in a cohort of 182 COVID-19 convalescent patients, 186 COVID-19 vaccine recipients, and 43 adolescents with post-mRNA vaccine myopericarditis using two ACE2 enzymatic immunoassays (EIAs). ACE2 IgM autoantibody EIA median optical densities (ODs) were lower in convalescent patients than pre-COVID-19 control samples with only 2/182 (1.1%) convalescents testing positive. Similarly, only 3/182 (1.6%) convalescent patients tested positive for ACE2 IgG, but patients with history of moderate-severe COVID-19 tended to have significantly higher median ODs than controls and mild COVID-19 patients. In contrast, ACE2 IgG antibodies were detected in 10/186 (5.4%) COVID-19 vaccine recipients after two doses of vaccination. Median ACE2 IgG EIA ODs of vaccine recipients were higher than controls irrespective of the vaccine platform used (inactivated or mRNA). ACE2 IgG ODs were not correlated with surrogate neutralizing antibody levels in vaccine recipients. ACE2 IgG levels peaked at day 56 post-first dose and declined within 12 months to baseline levels in vaccine recipients. Presence of ACE2 antibodies was not associated with adverse events following immunization including myopericarditis. One convalescent patient with ACE2 IgG developed Guillain-Barre syndrome, but causality was not established. ACE2 autoantibodies are observed in COVID-19 vaccine recipients and convalescent patients, but are likely innocuous.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Humans , COVID-19/prevention & control , Autoantibodies , COVID-19 Vaccines/adverse effects , Angiotensin-Converting Enzyme 2 , Vaccination , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
6.
Commun Med (Lond) ; 3(1): 168, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993690

ABSTRACT

BACKGROUND: Mpox virus (MPXV), previously known as monkeypox virus, has spread globally in 2022. An accurate and convenient antibody test is essential for the determination of seroprevalence and for studying immune response after natural infection or vaccination. Most seroprevalence or vaccine studies used either live MPXV (or vaccinia virus [VACV]) or inactivated MPXV (or VACV) culture lysate for serological assays, but MPXV culture can only be performed in biosafety level 3 (BSL-3) facilities. Here, we developed and evaluated an enzyme immunoassay (EIA) based on the MPXV A29 surface envelope protein. METHODS: We compared the specificity of the MPXV A29, VACV A27, and VACV lysate EIA using serum specimens collected prior to the global spread of MPXV. Next, we performed these EIAs for serum specimens collected from two mpox patients and an MVA-BN vaccine recipient. We also assessed the kinetics of plasmblast and MPXV A29-specific B-cell response. RESULTS: Using sera collected from different age groups in Hong Kong, we found that most individuals, including those born before 1981 who have received the smallpox vaccine, tested negative using the MPXV A29 protein. MPXV A29-specific antibody could be detected in the serum of mpox patients and an MVA-BN recipient. In a mpox patient, the frequency of plasmablast and MPXV A29-specific B cell peaked on day 8 post-symptom onset and gradually decreased. Finally, we demonstrated that antibodies against the A29 protein can be used for immunofluorescence staining of MPXV-infected cells. CONCLUSIONS: MPXV A29 protein is suitable for studying the immune response against MPXV infection.


Since early 2022, mpox (monkeypox) has been reported in many countries where the disease is not regularly found to occur. The aim of the study was to develop and evaluate the performance of laboratory assays based on the mpox virus surface protein, named A29. We found our assays could accurately distinguish naturally infected cases from smallpox vaccine recipients as well as those who were neither infected nor vaccinated. Our assays provide a useful tool for studying the host immune response to mpox virus.

8.
Vaccines (Basel) ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37112634

ABSTRACT

An intranasal COVID-19 vaccine, DelNS1-based RBD vaccines composed of H1N1 subtype (DelNS1-nCoV-RBD LAIV) was developed to evaluate the safety and immunogenicity in healthy adults. We conducted a phase 1 randomized, double-blinded, placebo-controlled study on healthy participants, age 18-55 and COVID-19 vaccines naïve, between March and September 2021. Participants were enrolled and randomly assigned (2:2:1) into the low and high dose DelNS1-nCoV-RBD LAIV manufactured in chicken embryonated eggs or placebo groups. The low and high-dose vaccine were composed of 1 × 107 EID50/ dose and 1 × 107.7 EID50/ dose in 0.2 mL respectively. The placebo vaccine was composed of inert excipients/dose in 0.2 mL. Recruited participants were administered the vaccine intranasally on day 0 and day 28. The primary end-point was the safety of the vaccine. The secondary endpoints included cellular, humoral, and mucosal immune responses post-vaccination at pre-specified time-points. The cellular response was measured by the T-cell ELISpot assay. The humoral response was measured by the serum anti-RBD IgG and live-virus neutralizing antibody against SARS-CoV-2. The saliva total Ig antibody responses in mucosal secretion against SARS-CoV-2 RBD was also assessed. Twenty-nine healthy Chinese participants were vaccinated (low-dose: 11; high-dose: 12 and placebo: 6). The median age was 26 years. Twenty participants (69%) were male. No participant was discontinued due to an adverse event or COVID-19 infection during the clinical trial. There was no significant difference in the incidence of adverse events (p = 0.620). For the T-cell response elicited after full vaccination, the positive PBMC in the high-dose group increased to 12.5 SFU/106 PMBC (day 42) from 0 (baseline), while it increased to 5 SFU/106 PBMC (day 42) from 2.5 SFU/106 PBMC (baseline) in the placebo group. The high-dose group showed a slightly higher level of mucosal Ig than the control group after receiving two doses of the vaccine (day 31, 0.24 vs. 0.21, p = 0.046; day 56 0.31 vs. 0.15, p = 0.45). There was no difference in the T-cell and saliva Ig response between the low-dose and placebo groups. The serum anti-RBD IgG and live virus neutralizing antibody against SARS-CoV-2 were undetectable in all samples. The high-dose intranasal DelNS1-nCoV-RBD LAIV is safe with moderate mucosal immunogenicity. A phase-2 booster trial with a two-dose regimen of the high-dose intranasal DelNS1-nCoV-RBD LAIV is warranted.

9.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36992081

ABSTRACT

BACKGROUND: We aimed to investigate the effect of non-alcoholic fatty liver disease (NAFLD) on BNT162b2 immunogenicity against wild-type SARS-CoV-2 and variants and infection outcome, as data are lacking. METHODS: Recipients of two doses of BNT162b2 were prospectively recruited. Outcomes of interest were seroconversion of neutralizing antibody by live virus microneutralization (vMN) to SARS-CoV-2 strains (wild-type, delta and omicron variants) at day 21, 56 and 180 after first dose. Exposure of interest was moderate-to-severe NAFLD (controlled attenuation parameter ≥ 268 dB/M on transient elastography). We calculated adjusted odds ratio (aOR) of infection with NAFLD by adjusting for age, sex, overweight/obesity, diabetes and antibiotic use. RESULTS: Of 259 BNT162b2 recipients (90 (34.7%) male; median age: 50.8 years (IQR: 43.6-57.8)), 68 (26.3%) had NAFLD. For wild type, there was no difference in seroconversion rate between NAFLD and control groups at day 21 (72.1% vs. 77.0%; p = 0.42), day 56 (100% vs. 100%) and day 180 (100% and 97.2%; p = 0.22), respectively. For the delta variant, there was no difference also at day 21 (25.0% vs. 29.5%; p = 0.70), day 56 (100% vs. 98.4%; p = 0.57) and day 180 (89.5% vs. 93.3%; p = 0.58), respectively. For the omicron variant, none achieved seroconversion at day 21 and 180. At day 56, there was no difference in seroconversion rate (15.0% vs. 18.0%; p = 0.76). NAFLD was not an independent risk factor of infection (aOR: 1.50; 95% CI: 0.68-3.24). CONCLUSIONS: NAFLD patients receiving two doses of BNT162b2 had good immunogenicity to wild-type SARS-CoV-2 and the delta variant but not the omicron variant, and they were not at higher risk of infection compared with controls.

10.
EBioMedicine ; 88: 104446, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36706582

ABSTRACT

BACKGROUND: Vaccination reduces COVID-19-related hospitalization among older adults. However, how SARS-CoV-2 infection and vaccine regimens affect vaccine-elicited immunity remain unclear. METHODS: This is a cross-sectional study recruiting adults aged ≥70 years with comorbidities in Hong Kong. Demographic and clinical information were collected using a questionnaire. Neutralizing antibody (nAb) titers (against ancestral and Omicron strains) and SARS-CoV-2-specific T cell response were analyzed according to infection and vaccination status. Multivariable regression analysis was performed to assess the associations of BNT162b2 and booster doses with higher nAb titers, with adjustment for comorbidities. FINDINGS: In July 2022, 101 patients were recruited, of whom 25 (24%) had previous infection. Overall, the geometric mean titer (GMT) of BA.5 nAb was 2.8-fold lower than that against BA.2 (P < 0.0001). The ancestral strain and BA.2 titers were higher for the 3-4-dose-BNT162 group than the 2-dose-BNT162b2 group. Non-infected individuals in the 3-4-dose-CoronaVac group had a more robust T cell response than the 2-dose-CoronaVac group (P = 0.0181), but there was no significant difference between the 2-dose-BNT162b2 and 3-4-dose-BNT162b groups. Patients who had heterologous CoronaVac-BNT162b2 prime-boost regimen had 3.22-fold higher BA.5 nAb titers than those who were primed/boosted with CoronaVac (P = 0.0207). Patients with hybrid immunity had higher Omicron nAb titers than those with vaccine-only immunity. Multivariable analysis showed that BNT162b2 and booster doses were independently associated with higher ancestral strain nAb titers. INTERPRETATION: Our data support the use of booster doses for older adults with or without prior infection. Non-infected individuals primed with CoronaVac will benefit from heterologous mRNA vaccine booster. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service (See acknowledgements for full list).


Subject(s)
COVID-19 , Vaccines , Humans , Aged , Cross-Sectional Studies , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Immunity, Cellular , Antibodies, Viral , Antibodies, Neutralizing
11.
Clin Infect Dis ; 76(3): e216-e226, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35762834

ABSTRACT

BACKGROUND: Early antiviral therapy was effective in the treatment of coronavirus disease 2019 (COVID-19). We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200 mg loading on day 1 followed by 100 mg daily on day 2 to 5 (combination group), or to remdesivir only of similar regimen (control group) (1:1). The primary endpoint was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom onset was 3 days. The median age was 65 years, and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary endpoint, the combination group was significantly quicker to NEWS2 = 0 (4 vs 6.5 days; hazard ratio [HR], 6.59; 95% confidence interval [CI], 6.1-7.09; P < .0001) when compared to the control group. For the secondary endpoints, the combination group was quicker to negative nasopharyngeal swab (NPS) viral load (VL) (6 vs 8 days; HR, 8.16; 95% CI, 7.79-8.52; P < .0001) and to develop seropositive immunoglobulin G (IgG) (8 vs 10 days; HR, 10.78; 95% CI, 9.98-11.58; P < .0001). All adverse events resolved upon follow-up. Combination group (HR, 4.1 95% CI, 1.9-8.6, P < .0001) was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, and in shortening viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients. CLINICAL TRIALS REGISTRATION: NCT04647695.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Interferon beta-1b , Aged , Humans , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/therapy , Interferon beta-1b/administration & dosage , Interferon beta-1b/therapeutic use , Prospective Studies , SARS-CoV-2 , Treatment Outcome
13.
Pediatr Res ; 93(1): 176-182, 2023 01.
Article in English | MEDLINE | ID: mdl-35418598

ABSTRACT

BACKGROUND: The P.1 variant is a Variant of Concern announced by the WHO. The present work aimed to characterize the clinical features of pediatric patients with SARS-CoV-2 before and after the emergence of P.1. METHODS: This is a cohort study. Data of symptomatic patients younger than 18 years diagnosed with COVID-19 by PCR tests registered in Painel COVID-19 Amazonas were analyzed. RESULTS: A total of 4080 symptomatic pediatric patients were identified in the database between March 2020 and July 2021, of which 1654 were categorized as pre-P.1 and 978 as P.1-dominant cases, based on the prevalence of P.1 of >90% in the North Region, Brazil. Lower case-fatality rate was observed in non-infants infected during the P.1-dominant period (0.9% vs. 2.2%). In general, patients infected during the P.1-dominant period had less fever (70.8% vs. 74.2%) and less lower respiratory tract symptoms (respiratory distress: 11.8% vs. 18.9%, dyspnea: 27.9% vs. 34.5%) yet higher prevalence of neurological symptoms, headache for example (42.8% vs. 5.9%). CONCLUSIONS: The prevalence of symptoms of COVID-19 can differ across different periods of variant dominance. Lower prevalence of fever during the P.1-dominant period may reduce the effectiveness of symptom-based screening in public premises where laboratory diagnostic tests are not available. IMPACT: The prevalence rate of symptoms of SARS-CoV-2 infection can differ among different variants. The present work documents the difference in the clinical features of SARS-CoV-2 in patients aged below 18 years before and after the emergence of P.1, the first study of its kind. Unlike previous studies that focus solely on hospitalized cases, the present work considers both mild and severe cases. While non-infants had a lower fatality rate, lower prevalence of fever associated with the emergence of P.1 may reduce the effectiveness of symptom-based screening in public premises where laboratory diagnostic tests are not available.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , Aged , Cohort Studies , Fever
14.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36195094

ABSTRACT

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Lectins/pharmacology , Mannose/pharmacology , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/pharmacology , Antiviral Agents/pharmacology
15.
Front Immunol ; 13: 1018393, 2022.
Article in English | MEDLINE | ID: mdl-36304475

ABSTRACT

Acquiring protective immunity through vaccination is essential, especially for patients with type 2 diabetes who are vulnerable for adverse clinical outcomes during coronavirus disease 2019 (COVID-19) infection. Type 2 diabetes (T2D) is associated with immune dysfunction. Here, we evaluated the impact of T2D on the immunological responses induced by mRNA (BNT162b2) and inactivated (CoronaVac) vaccines, the two most commonly used COVID-19 vaccines. The study consisted of two parts. In Part 1, the sera titres of IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) alpha receptor binding domain (RBD), their neutralizing capacity, and antigen-specific CD4+T and CD8+T cell responses at 3-6 months after vaccination were compared between BNT162b2 (n=60) and CoronaVac (n=50) vaccinees with or without T2D. Part 2 was a time-course study investigating the initial B and T cell responses induced by BNT162b2 among vaccinees (n=16) with or without T2D. Our data showed that T2D impaired both cellular and humoral immune responses induced by CoronaVac. For BNT162b2, T2D patients displayed a reduction in CD4+T-helper 1 (Th1) differentiation following their first dose. However, this initial defect was rectified by the second dose of BNT162b2, resulting in comparable levels of memory CD4+ and CD8+T cells, anti-RBD IgG, and neutralizing antibodies with healthy individuals at 3-6 months after vaccination. Hence, T2D influences the effectiveness of COVID-19 vaccines depending on their platform. Our findings provide a potential mechanism for the susceptibility of developing adverse outcomes observed in COVID-19 patients with T2D and received either CoronaVac or just one dose of BNT162b2.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Viral Vaccines , Humans , COVID-19 Vaccines , RNA, Messenger , COVID-19/prevention & control , BNT162 Vaccine , RNA, Viral , SARS-CoV-2 , Immunity, Cellular , Immunoglobulin G
18.
Viruses ; 14(8)2022 08 04.
Article in English | MEDLINE | ID: mdl-36016336

ABSTRACT

Formulating termination of isolation (de-isolation) policies requires up-to-date knowledge about viral shedding dynamics. However, current de-isolation policies are largely based on viral load data obtained before the emergence of Omicron variant. In this retrospective cohort study involving adult patients hospitalised for COVID-19 between January and February 2022, we sought to determine SARS-CoV-2 viral shedding kinetics and to investigate the risk factors associated with slow viral decline during the 2022 Omicron wave. A total of 104 patients were included. The viral load was highest (Ct value was lowest) on days 1 post-symptom-onset (PSO) and gradually declined. Older age, hypertension, hyperlipidaemia and chronic kidney disease were associated with slow viral decline in the univariate analysis on both day 7 and day 10 PSO, while incomplete or no vaccination was associated with slow viral decline on day 7 PSO only. However, older age was the only risk factor that remained statistically significant in the multivariate analysis. In conclusion, older age is an independent risk factor associated with slow viral decline in this study conducted during the Omicron-dominant 2022 COVID-19 wave. Transmission-based precaution guidelines should take age into consideration when determining the timing of de-isolation.


Subject(s)
COVID-19 , Viral Load , Virus Shedding , Adult , Aged , COVID-19/virology , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2
19.
Vaccines (Basel) ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35891286

ABSTRACT

Background: Gut microbiota can be associated with COVID-19 vaccine immunogenicity. We investigated whether recent antibiotic use influences BNT162b2 vaccine immunogenicity. Methods: BNT162b2 recipients from three centers were prospectively recruited. Outcomes of interest were seroconversion of neutralising antibody (NAb) at day 21, 56 and 180 after first dose. We calculated the adjusted odds ratio (aOR) of seroconversion with antibiotic usage (defined as ever use of any antibiotics within six months before first dose of vaccine) by adjusting for covariates including age, sex, smoking, alcohol, and comorbidities. Results: Of 316 BNT162b2 recipients (100 [31.6%] male; median age: 50.1 [IQR: 40.0-57.0] years) recruited, 29 (9.2%) were antibiotic users. There was a trend of lower seroconversion rates in antibiotic users than non-users at day 21 (82.8% vs. 91.3%; p = 0.14) and day 56 (96.6% vs. 99.3%; p = 0.15), but not at day 180 (93.3% vs. 94.1%). A multivariate analysis showed that recent antibiotic usage was associated with a lower seroconversion rate at day 21 (aOR 0.26;95% CI: 0.08-0.96). Other factors associated with a lower seroconversion rate after first dose of the BNT162b2 vaccine included age ≥ 60 years (aOR: 0.34;95% CI: 0.13-0.95) and male sex (aOR: 0.14, 95% CI: 0.05-0.34). There were no significant factors associated with seroconversion after two doses of BNT16b2, including antibiotic use (aOR: 0.03;95% CI: 0.001-1.15). Conclusions: Recent antibiotic use may be associated with a lower seroconversion rate at day 21 (but not day 56 or 180) among BNT162b2 recipients. Further long-term follow-up data with a larger sample size is needed to reach a definite conclusion on how antibiotics influence immunogenicity and the durability of the vaccine response.

20.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Article in English | MEDLINE | ID: mdl-35874954

ABSTRACT

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Caco-2 Cells , Ceramides , Ethers , Glycerophospholipids , Humans , Lipid Metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...