Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Vaccines (Basel) ; 12(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675786

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged following an outbreak of unexplained viral illness in China in late 2019. Since then, it has spread globally causing a pandemic that has resulted in millions of deaths and has had enormous economic and social consequences. The emergence of SARS-CoV-2 saw the rapid and widespread development of a number of vaccine candidates worldwide, and this never-before-seen pace of vaccine development led to several candidates progressing immediately through clinical trials. Many countries have now approved vaccines for emergency use, with large-scale vaccination programs ongoing. Despite these successes, there remains a need for ongoing pre-clinical and clinical development of vaccine candidates against SARS-CoV-2, as well as vaccines that can elicit strong mucosal immune responses. Here, we report on the efficacy of a Newcastle disease virus-vectored vaccine candidate expressing SARS-CoV-2 spike protein (NDV-FLS) administered to cynomolgus macaques. Macaques given two doses of the vaccine via respiratory immunization developed robust immune responses and had reduced viral RNA levels in nasal swabs and in the lower airway. Our data indicate that NDV-FLS administered mucosally provides significant protection against SARS-CoV-2 infection, resulting in reduced viral burden and disease manifestation, and should be considered as a viable candidate for clinical development.

2.
Front Cell Infect Microbiol ; 13: 1275277, 2023.
Article in English | MEDLINE | ID: mdl-38035334

ABSTRACT

Introduction: Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods: To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results: While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion: These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.


Subject(s)
Ebolavirus , Extracellular Vesicles , Hemorrhagic Fever, Ebola , Animals , Mice , Hemorrhagic Fever, Ebola/metabolism , Macaca mulatta , Chromatography, Liquid , Tandem Mass Spectrometry , Ebolavirus/physiology , Chemokines/metabolism , Extracellular Vesicles/metabolism
3.
ACS Infect Dis ; 9(5): 1064-1077, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37053583

ABSTRACT

Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Subject(s)
Arenavirus , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Cell Line , Sphingosine , SARS-CoV-2 , Viral Fusion Proteins
4.
Viruses ; 15(3)2023 03 17.
Article in English | MEDLINE | ID: mdl-36992478

ABSTRACT

Nigeria experiences annual outbreaks of Lassa fever (LF) with high case numbers. At least three clades of Lassa virus (LASV) have been documented in Nigeria, though recent outbreaks are most often associated with clade II or clade III viruses. Using a recently isolated clade III LASV from a case of LF in Nigeria in 2018, we developed and characterized a guinea pig adapted virus capable of causing lethal disease in commercially available Hartley guinea pigs. Uniform lethality was observed after four passages of the virus and was associated with only two dominant genomic changes. The adapted virus was highly virulent with a median lethal dose of 10 median tissue culture infectious doses. Disease was characterized by several hallmarks of LF in similar models including high fever, thrombocytopenia, coagulation disorders, and increased inflammatory immune mediators. High viral loads were noted in all solid organ specimens analyzed. Histological abnormalities were most striking in the lungs and livers of terminal animals and included interstitial inflammation, edema, and steatosis. Overall, this model represents a convenient small animal model for a clade III Nigeria LASV with which evaluation of specific prophylactic vaccines and medical countermeasures can be conducted.


Subject(s)
Lassa Fever , Viral Vaccines , Guinea Pigs , Animals , Lassa virus , Nigeria/epidemiology , Antibodies, Viral
5.
J Virol ; 96(16): e0072822, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35924920

ABSTRACT

The 1918 H1N1 influenza pandemic was among the most severe in history, taking the lives of approximately 50 million people worldwide, and novel prophylactic vaccines are urgently needed to prevent another pandemic. Given that macaques are physiologically relevant preclinical models of human immunology that have advanced the clinical treatment of infectious diseases, a lethal pandemic influenza challenge model would provide a stringent platform for testing new influenza vaccine concepts. To this end, we infected rhesus macaques and Mauritian cynomolgus macaques with highly pathogenic 1918 H1N1 influenza virus and assessed pathogenesis and disease severity. Despite infection with a high dose of 1918 influenza delivered via multiple routes, rhesus macaques demonstrated minimal signs of disease, with only intermittent viral shedding. Cynomolgus macaques infected via intrabronchial instillation demonstrated mild symptoms, with disease severity depending on the infection dose. Cynomolgus macaques infected with a high dose of 1918 influenza delivered via multiple routes experienced moderate disease characterized by consistent viral shedding, pulmonary infiltrates, and elevated inflammatory cytokine levels. However, 1918 influenza was uniformly nonlethal in these two species, demonstrating that this isolate is insufficiently pathogenic in rhesus and Mauritian cynomolgus macaques to support testing novel prophylactic influenza approaches where protection from severe disease combined with a lethal outcome is desired as a highly stringent indication of vaccine efficacy. IMPORTANCE The world remains at risk of an influenza pandemic, and the development of new therapeutic and preventative modalities is critically important for minimizing human death and suffering during the next influenza pandemic. Animal models are central to the development of new therapies and vaccine approaches. In particular, nonhuman primates like rhesus and cynomolgus macaques are highly relevant preclinical models given their physiological and immunological similarities to humans. Unfortunately, there remains a scarcity of macaque models of pandemic influenza with which to test novel antiviral modalities. Here, we demonstrate that even at the highest doses tested, 1918 influenza was not lethal in these two macaque species, suggesting that they are not ideal for the development and testing of novel pandemic influenza-specific vaccines and therapies. Therefore, other physiologically relevant nonhuman primate models of pandemic influenza are needed.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Humans , Macaca fascicularis , Macaca mulatta
6.
iScience ; 24(12): 103530, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34870132

ABSTRACT

The golden hamster model of SARS-CoV-2 infection recapitulates key characteristics of COVID-19. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in hamsters. We report that delivery of SARS-CoV-2 by a low- versus high-volume intranasal or intragastric route results in comparable viral titers in the lung and viral shedding. However, low-volume intranasal exposure results in milder weight loss, whereas intragastric exposure leads to a diminished capacity to regain body weight. Male hamsters, and particularly older male hamsters, display an impaired capacity to recover from illness and delayed viral clearance. These factors were found to influence the nature of the host inflammatory cytokine response but had a minimal effect on the quality and durability of the humoral immune response and susceptibility to re-infection. These data further elucidate key factors that impact pre-clinical challenge studies carried out in the hamster model of COVID-19.

7.
iScience ; 24(11): 103219, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34632328

ABSTRACT

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.

8.
iScience ; 24(7): 102699, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34124612

ABSTRACT

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector (AAV6) expressing human ACE-2 (AAV6.2FF-hACE2). We validated this model using a previously described synthetic DNA vaccine plasmid, INO-4800 (pS). Intranasal instillation of AAV6.2FF-hACE2 resulted in robust hACE2 expression in the respiratory tract. pS induced robust cellular and humoral responses. Vaccinated animals were challenged with 105 TCID50 SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) and euthanized four days post-challenge to assess viral load. One immunization resulted in 50% protection and two immunizations were completely protective. Overall, the AAV6.2FF-hACE2 mouse transduction model represents an easily accessible, genetically diverse mouse model for wild-type SARS-CoV-2 infection and preclinical evaluation of potential interventions.

9.
Nat Commun ; 12(1): 3612, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127676

ABSTRACT

Widespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naïve deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 remains unknown.


Subject(s)
COVID-19/veterinary , Peromyscus/virology , Zoonoses/transmission , Animals , Animals, Wild , Antibodies, Neutralizing/immunology , COVID-19/pathology , COVID-19/transmission , Disease Susceptibility , Feces/virology , Female , Histiocytes/pathology , Humans , Male , Neutrophils/immunology , Neutrophils/pathology , RNA, Viral/isolation & purification , SARS-CoV-2/classification , SARS-CoV-2/genetics , United States , Zoonoses/virology
10.
PLoS One ; 16(6): e0251649, 2021.
Article in English | MEDLINE | ID: mdl-34106944

ABSTRACT

Until now, antiviral therapeutic agents are still urgently required for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a sensitive SCoV-2 Spike glycoprotein (SP), including an SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. Based on this system, we have demonstrated that an aqueous extract from the Natural herb Prunella vulgaris (NhPV) displayed potent inhibitory effects on SCoV-2 SP (including SPG614 mutant) pseudotyped virus (SCoV-2-SP-PVs) mediated infections. Moreover, we have compared NhPV with another compound, Suramin, for their anti-SARS-CoV-2 activities and the mode of their actions, and found that both NhPV and Suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, the inhibitory effects of NhPV and Suramin were confirmed by the wild type SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) virus infection in Vero cells. Furthermore, our results also demonstrated that the combination of NhPV/Suramin with an anti-SARS-CoV-2 neutralizing antibody mediated a more potent blocking effect against SCoV2-SP-PVs. Overall, by using SARS-CoV-2 SP-pseudotyped HIV-1-based entry system, we provide strong evidence that NhPV and Suramin have anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , Plant Extracts/pharmacology , Prunella/chemistry , SARS-CoV-2/drug effects , Suramin/pharmacology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/pharmacology , COVID-19/genetics , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Drug Therapy, Combination , Humans , Mutation , Protein Binding , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
PLoS One ; 16(6): e0253068, 2021.
Article in English | MEDLINE | ID: mdl-34111204

ABSTRACT

The novel coronavirus, SARS-CoV-2, has spread into a pandemic since its emergence in Wuhan, China in December of 2019. This has been facilitated by its high transmissibility within the human population and its ability to remain viable on inanimate surfaces for an extended period. To address the latter, we examined the effect of simulated sunlight on the viability of SARS-CoV-2 spiked into tissue culture medium or mucus. The study revealed that inactivation took 37 minutes in medium and 107 minutes in mucus. These times-to-inactivation were unexpected since they are longer than have been observed in other studies. From this work, we demonstrate that sunlight represents an effective decontamination method but the speed of decontamination is variable based on the underlying matrix. This information has an important impact on the development of infection prevention and control protocols to reduce the spread of this deadly pathogen.


Subject(s)
COVID-19/virology , Decontamination/methods , Mucus/virology , SARS-CoV-2/radiation effects , Sunlight , Virus Inactivation/radiation effects , Humans , Microbial Viability/radiation effects , SARS-CoV-2/physiology
12.
Viruses ; 12(1)2020 01 05.
Article in English | MEDLINE | ID: mdl-31948040

ABSTRACT

Low pathogenic avian influenza (LPAI) H7N9 viruses have recently evolved to gain a polybasic cleavage site in the hemagglutinin (HA) protein, resulting in variants with increased lethality in poultry that meet the criteria for highly pathogenic avian influenza (HPAI) viruses. Both LPAI and HPAI variants can cause severe disease in humans (case fatality rate of ~40%). Here, we investigated the virulence of HPAI H7N9 viruses containing a polybasic HA cleavage site (H7N9-PBC) in mice. Inoculation of mice with H7N9-PBC did not result in observable disease; however, mice inoculated with a mouse-adapted version of this virus, generated by a single passage in mice, caused uniformly lethal disease. In addition to the PBC site, we identified three other mutations that are important for host-adaptation and virulence in mice: HA (A452T), PA (D347G), and PB2 (M483K). Using reverse genetics, we confirmed that the HA mutation was the most critical for increased virulence in mice. Our study identifies additional disease determinants in a mammalian model for HPAI H7N9 virus. Furthermore, the ease displayed by the virus to adapt to a new host highlights the potential for H7N9-PBC viruses to rapidly acquire mutations that may enhance their risk to humans or other animal species.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Host Adaptation/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Cell Line , Female , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/growth & development , Mice , Mice, Inbred BALB C , Mutation , Orthomyxoviridae Infections/pathology , Phenotype , Serial Passage , Virulence/genetics , Virus Replication/genetics
13.
Viruses ; 11(11)2019 10 26.
Article in English | MEDLINE | ID: mdl-31717793

ABSTRACT

Ebola virus (EBOV) is a zoonotic pathogen that poses a significant threat to public health, causing sporadic yet devastating outbreaks that have the potential to spread worldwide, as demonstrated during the 2013-2016 West African outbreak. Mouse models of infection are important tools for the development of therapeutics and vaccines. Exposure of immunocompetent mice to clinical isolates of EBOV is nonlethal; consequently, EBOV requires prior adaptation in mice to cause lethal disease. Until now, the only immunocompetent EBOV mouse model was based on the Mayinga variant, which was isolated in 1976. Here, we generated a novel mouse-adapted (MA)-EBOV based on the 2014 Makona isolate by inserting EBOV/Mayinga-MA mutations into the EBOV/Makona genome, followed by serial passaging of the rescued virus in suckling mice. The resulting EBOV/Makona-MA causes lethal disease in adult immunocompetent mice within 6 to 9 days and has a lethal dose (LD50) of 0.004 plaque forming units (PFU). Two additional mutations emerged after mouse-adaptation in the viral nucleoprotein (NP) and membrane-associated protein VP24. Using reverse genetics, we found the VP24 mutation to be critical for EBOV/Makona-MA virulence. EBOV/Makona-MA infected mice that presented with viremia, high viral burden in organs, increased release of pro-inflammatory cytokines/chemokines, and lymphopenia. Our mouse model will help advance pre-clinical development of countermeasures against contemporary EBOV variants.


Subject(s)
Disease Models, Animal , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Animals , Ebolavirus/genetics , Ebolavirus/isolation & purification , Genome, Viral , Humans , Mice , Mice, Inbred BALB C , Mutation , Viral Load , Viral Proteins/genetics , Viral Proteins/metabolism
14.
Sci Rep ; 9(1): 11171, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31371748

ABSTRACT

Nipah virus (NiV) has emerged as a highly lethal zoonotic paramyxovirus that is capable of causing a febrile encephalitis and/or respiratory disease in humans for which no vaccines or licensed treatments are currently available. There are two genetically and geographically distinct lineages of NiV: NiV-Malaysia (NiV-M), the strain that caused the initial outbreak in Malaysia, and NiV-Bangladesh (NiV-B), the strain that has been implicated in subsequent outbreaks in India and Bangladesh. NiV-B appears to be both more lethal and have a greater propensity for person-to-person transmission than NiV-M. Here we describe the generation and characterization of stable RNA polymerase II-driven infectious cDNA clones of NiV-M and NiV-B. In vitro, reverse genetics-derived NiV-M and NiV-B were indistinguishable from a wildtype isolate of NiV-M, and both viruses were pathogenic in the Syrian hamster model of NiV infection. We also describe recombinant NiV-M and NiV-B with enhanced green fluorescent protein (EGFP) inserted between the G and L genes that enable rapid and sensitive detection of NiV infection in vitro. This panel of molecular clones will enable studies to investigate the virologic determinants of henipavirus pathogenesis, including the pathogenic differences between NiV-M and NiV-B, and the high-throughput screening of candidate therapeutics.


Subject(s)
Nipah Virus/genetics , Animals , Bangladesh , Disease Outbreaks , Henipavirus Infections/transmission , Henipavirus Infections/virology , Humans , Malaysia , Mesocricetus/virology , RNA Polymerase II , Reverse Genetics
15.
Cytotherapy ; 21(4): 393-415, 2019 04.
Article in English | MEDLINE | ID: mdl-30871899

ABSTRACT

Cell-based therapies are a rapidly developing area of regenerative medicine as dynamic treatments that execute therapeutic functions multimodally. Monocytes and macrophages, as innate immune cells that control inflammation and tissue repair, are increasing popular clinical candidates due to their spectrum of functionality. In this article, we review the role of monocytes and macrophages specifically in inflammatory and degenerative disease pathology and the evidence supporting the use of these cells as an effective therapeutic strategy. We compare current strategies of exogenously polarized monocyte/macrophage therapies regarding dosage, delivery and processing to identify outcomes, advances and challenges to their clinical use. Monocytes/macrophages hold the potential to be a promising therapeutic avenue but understanding and optimization of disease-specific efficacy is needed to accelerate their clinical use.


Subject(s)
Disease , Inflammation/therapy , Macrophages/transplantation , Monocytes/transplantation , Animals , Humans , Inflammation/pathology , Regenerative Medicine
16.
J Infect Dis ; 218(suppl_5): S603-S611, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29955852

ABSTRACT

Background: Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods: Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results: Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions: This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.


Subject(s)
Antibodies, Viral/immunology , Ebolavirus/immunology , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/prevention & control , Animals , Cross Protection , Cross Reactions , Female , Guinea Pigs , Horses , Male
17.
Am J Public Health ; 102(5): e17-25, 2012 May.
Article in English | MEDLINE | ID: mdl-22420814

ABSTRACT

OBJECTIVES: We assessed changes in smoking prevalence and other measures associated with the July 2008 New York Office of Alcoholism and Substance Abuse Services tobacco policy, which required that all publicly funded addiction treatment programs implement smoke-free grounds, have "no evidence" of smoking among staff, and make tobacco dependence treatment available for all clients. METHODS: In a random sample of 10 programs, staff and clients were surveyed before the policy and 1 year later. Measures included tobacco-related knowledge, attitudes, and practices used by counselors and received by clients. RESULTS: Client smoking decreased from 69.4% to 62.8% (P = .044). However, response to the policy differed by program type. Outpatient programs showed no significant changes on any of the staff and client survey measures. In methadone programs, staff use of tobacco-related practices increased (P < .01), client attitudes toward tobacco treatment grew more positive (P < .05), and clients received more tobacco-related services (P < .05). Residential clients were more likely to report having quit smoking after policy implementation (odds ratio = 4.7; 95% confidence interval = 1.53, 14.19), but they reported less favorable attitudes toward tobacco treatment (P < .001) and received fewer tobacco-related services from their program (P < .001) or their counselor (P < .001). CONCLUSIONS: If supported by additional research, the New York policy may offer a model that addiction treatment systems can use to address smoking in a population where it has been prevalent and intractable. Additional intervention or policy supports may be needed in residential programs, which face greater challenges to implementing tobacco-free grounds.


Subject(s)
Financing, Government/statistics & numerical data , Health Policy , Smoking/epidemiology , Smoking/psychology , Substance-Related Disorders/rehabilitation , Adult , Female , Health Knowledge, Attitudes, Practice , Health Personnel/statistics & numerical data , Humans , Inpatients/psychology , Inpatients/statistics & numerical data , Male , Methadone/therapeutic use , Middle Aged , New York/epidemiology , Opiate Substitution Treatment/psychology , Opiate Substitution Treatment/statistics & numerical data , Outpatients/psychology , Outpatients/statistics & numerical data , Smoking Cessation/psychology , Smoking Cessation/statistics & numerical data , Socioeconomic Factors
18.
Drug Alcohol Depend ; 121(1-2): 30-7, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-21906892

ABSTRACT

BACKGROUND: Smoking prevalence among persons in addiction treatment is 3-4 times higher than in the general population. However, treatment programs often report organizational barriers to providing tobacco-related services. This study assessed the effectiveness of a six month organizational change intervention, Addressing Tobacco Through Organizational Change (ATTOC), to improve how programs address tobacco dependence. METHODS: The ATTOC intervention, implemented in three residential treatment programs, included consultation, staff training, policy development, leadership support and access to nicotine replacement therapy (NRT) medication. Program staff and clients were surveyed at pre- and post-intervention, and at 6 month follow-up. The staff survey measured knowledge of the hazards of smoking, attitudes about and barriers to treating smoking, counselor self-efficacy in providing such services, and practices used to address tobacco. The client survey measured knowledge, attitudes, and tobacco-related services received. NRT use was tracked. RESULTS: From pre- to post-intervention, staff beliefs became more favorable toward treating tobacco dependence (F(1, 163)=7.15, p=0.008), NRT use increased, and tobacco-related practices increased in a non-significant trend (F(1, 123)=3.66, p=0.058). Client attitudes toward treating tobacco dependence became more favorable (F(1, 235)=10.58, p=0.0013) and clients received more tobacco-related services from their program (F(1, 235)=92.86, p<0.0001) and from their counselors (F(1, 235)=61.59, p<0.0001). Most changes remained at follow-up. CONCLUSIONS: The ATTOC intervention can help shift the treatment system culture and increase tobacco services in addiction treatment programs.


Subject(s)
Smoking Cessation/methods , Smoking/therapy , Tobacco Use Disorder/therapy , Adult , Counseling , Female , Follow-Up Studies , Health Knowledge, Attitudes, Practice , Humans , Male , Middle Aged , Organizational Innovation , Residential Treatment , Self Efficacy
19.
Nicotine Tob Res ; 13(6): 401-11, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21464202

ABSTRACT

INTRODUCTION: This review explores whether smoking prevalence in addiction treatment samples exceeds that shown in epidemiological data for persons with alcohol or other drug use disorders and whether smoking may have decreased over time in the addiction treatment population as it has done in the general population. METHODS: English language papers published between 1987 and 2009 were searched electronically. Forty papers reporting smoking prevalence for addiction treatment samples in the United States were identified, and key predictor variables were abstracted. Random logistic models were used to assess relationships between each individual predictor (year, treatment modality, primary drug treated, government status, and public/private funding status) and smoking prevalence. RESULTS: The lowest smoking prevalence aggregated for studies reported in any single year was 65%, well above epidemiological estimates reported among those with alcohol use and drug use disorders. The odds of smoking were higher in methadone maintenance programs (odds ratio [OR] = 2.25, CI = 1.08, 4.68) as compared with outpatient programs. No other variables in the model were significant. Reanalysis omitting recent studies that may represent outliers or confounding with type of treatment showed a small but significant decrease in smoking over time (OR = 0.9891, CI = 0.9888, 0.9893). CONCLUSIONS: The very high smoking rates reported in addiction treatment samples warrant significant, organized, and systemic response from addiction treatment systems, from agencies that fund and regulate those systems, and from agencies concerned with tobacco control.


Subject(s)
Behavior, Addictive/epidemiology , Smoking/epidemiology , Substance-Related Disorders/therapy , Alcohol-Related Disorders/complications , Alcohol-Related Disorders/therapy , Behavior, Addictive/therapy , Humans , Logistic Models , Methadone/therapeutic use , Narcotics/therapeutic use , Odds Ratio , Opiate Substitution Treatment , Prevalence , Substance-Related Disorders/complications , United States/epidemiology
20.
Drug Alcohol Depend ; 114(2-3): 237-41, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21055884

ABSTRACT

BACKGROUND: Addiction treatment programs are increasingly working to address prevalent and comorbid tobacco dependence in their service populations. However at present there are few published measurement tools, with known psychometric properties, that can be used to assess client-level constructs related to tobacco dependence in addiction treatment settings. Following on previous work that developed a staff-level survey instrument, this report describes the development and measurement characteristics of the smoking knowledge, attitudes and services (S-KAS) for use with clients in addiction treatment settings. METHOD: 250 clients enrolled in residential drug abuse treatment programs were surveyed. Summary statistics were used to characterize both the participants and their responses, and exploratory factor analysis (EFA) was used to examine the underlying factor structure. RESULTS: Examination of the rotated factor pattern indicated that the latent structure was formed by one knowledge factor, one attitude factor, and two "service" factors reflecting program services and clinician services related to tobacco dependence. Standardized Cronbach's alpha coefficients for the four scales were, respectively, .57, .75, .82 and .82. CONCLUSIONS: The proposed scales have reasonably good psychometric characteristics, although the knowledge scale leaves room for improvement, and will allow researchers to quantify client knowledge, attitudes and services regarding tobacco dependence treatment. Researchers, program administrators, and clinicians may find the S-KAS useful in changing organizational culture and clinical practices related to tobacco addiction, help in program evaluation studies, and in tracking and improving client motivation.


Subject(s)
Behavior, Addictive/psychology , Behavior, Addictive/therapy , Health Knowledge, Attitudes, Practice , Smoking/psychology , Smoking/therapy , Substance Abuse Treatment Centers , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...