Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(47): eabk1151, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797718

ABSTRACT

Wide crosses result in postzygotic elimination of one parental chromosome set, but the mechanisms that result in such differential fate are poorly understood. Here, we show that alterations of centromeric histone H3 (CENH3) lead to its selective removal from centromeres of mature Arabidopsis eggs and early zygotes, while wild-type CENH3 persists. In the hybrid zygotes and embryos, CENH3 and essential centromere proteins load preferentially on the CENH3-rich centromeres of the wild-type parent, while CENH3-depleted centromeres fail to reconstitute new CENH3-chromatin and the kinetochore and are frequently lost. Genome elimination is opposed by E3 ubiquitin ligase VIM1. We propose a model based on cooperative binding of CENH3 to chromatin to explain the differential CENH3 loading rates. Thus, parental CENH3 polymorphisms result in epigenetically distinct centromeres that instantiate a strong mating barrier and produce haploids.

2.
PLoS Genet ; 11(9): e1005494, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26352591

ABSTRACT

The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.


Subject(s)
Arabidopsis/genetics , Centromere , Histones/genetics , Point Mutation , Amino Acid Substitution , Codon , Genes, Plant , Haploidy , Ovule , Pollen
3.
PLoS Genet ; 11(1): e1004970, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25622028

ABSTRACT

The point of attachment of spindle microtubules to metaphase chromosomes is known as the centromere. Plant and animal centromeres are epigenetically specified by a centromere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate. This diversification of CENH3 is a conundrum since its role as the key determinant of centromere identity remains a constant across species. Here, we ask whether naturally occurring divergence in CENH3 has functional consequences. We performed functional complementation assays on cenh3-1, a null mutation in Arabidopsis thaliana, using untagged CENH3s from increasingly distant relatives. Contrary to previous results using GFP-tagged CENH3, we find that the essential functions of CENH3 are conserved across a broad evolutionary landscape. CENH3 from a species as distant as the monocot Zea mays can functionally replace A. thaliana CENH3. Plants expressing variant CENH3s that are fertile when selfed show dramatic segregation errors when crossed to a wild-type individual. The progeny of this cross include hybrid diploids, aneuploids with novel genetic rearrangements and haploids that inherit only the genome of the wild-type parent. Importantly, it is always chromosomes from the plant expressing the divergent CENH3 that missegregate. Using chimeras, we show that it is divergence in the fast-evolving N-terminal tail of CENH3 that is causing segregation errors and genome elimination. Furthermore, we analyzed N-terminal tail sequences from plant CENH3s and discovered a modular pattern of sequence conservation. From this we hypothesize that while the essential functions of CENH3 are largely conserved, the N-terminal tail is evolving to adapt to lineage-specific centromeric constraints. Our results demonstrate that this lineage-specific evolution of CENH3 causes inviability and sterility of progeny in crosses, at the same time producing karyotypic variation. Thus, CENH3 evolution can contribute to postzygotic reproductive barriers.


Subject(s)
Arabidopsis/genetics , Autoantigens/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , Mitosis/genetics , Amino Acid Sequence , Animals , Arabidopsis/growth & development , Biological Evolution , Centromere/genetics , Centromere Protein A , Chimera/genetics , Diploidy , Haploidy , Histones/genetics , Molecular Sequence Data , Zygote/growth & development
4.
Nat Commun ; 5: 5334, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25358957

ABSTRACT

Genetic analysis in haploids provides unconventional yet powerful advantages not available in diploid organisms. In Arabidopsis thaliana, haploids can be generated through seeds by crossing a wild-type strain to a transgenic strain with altered centromeres. Here we report the development of an improved haploid inducer (HI) strain, SeedGFP-HI, that aids selection of haploid seeds prior to germination. We also show that haploids can be used as a tool to accelerate a variety of genetic analyses, specifically pyramiding multiple mutant combinations, forward mutagenesis screens, scaling down a tetraploid to lower ploidy levels and swapping of nuclear and cytoplasmic genomes. Furthermore, the A. thaliana HI can be used to produce haploids from a related species A. suecica and generate homozygous mutant plants from strong maternal gametophyte lethal alleles, which is not possible via conventional diploid genetics. Taken together, our results demonstrate the utility and power of haploid genetics in A. thaliana.


Subject(s)
Arabidopsis/genetics , Genetic Techniques , Haploidy , Genome, Plant , Homozygote , Mutation , Phenotype
5.
Nat Protoc ; 9(4): 761-72, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24603935

ABSTRACT

Hybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs. Key to reverse breeding is the suppression of meiotic crossovers in a hybrid plant to ensure the transmission of nonrecombinant chromosomes to haploid gametes. These gametes are subsequently regenerated as doubled-haploid (DH) offspring. Each DH carries combinations of its parental chromosomes, and complementing pairs can be crossed to reconstitute the initial hybrid. Achiasmatic meiosis and haploid generation result in uncommon phenotypes among offspring owing to chromosome number variation. We describe how these features can be dealt with during a reverse-breeding experiment, which can be completed in six generations (∼1 year).


Subject(s)
Arabidopsis/genetics , Breeding/methods , Chimera , Arabidopsis Proteins/genetics , Cell Cycle Proteins/genetics , Chromosomes, Plant , Haploidy , Heterozygote , Meiosis , Plants, Genetically Modified , Pollen/genetics , Rec A Recombinases/genetics
6.
Genome Biol ; 14(1): R10, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23363705

ABSTRACT

BACKGROUND: Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. RESULTS: Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. CONCLUSIONS: While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.


Subject(s)
Centromere/genetics , Evolution, Molecular , Tandem Repeat Sequences , Animals , Base Sequence , Molecular Sequence Data , Plants/genetics , Species Specificity
7.
Chromosome Res ; 20(5): 579-93, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22766638

ABSTRACT

In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.


Subject(s)
Chromosome Segregation , Chromosomes/physiology , Evolution, Molecular , Meiosis , Adaptation, Biological , Animals , Chromosomes/metabolism , Genomics/methods , Mitosis , Phylogeny , Plants/metabolism , Spindle Apparatus/metabolism , Tandem Repeat Sequences
8.
Epigenetics Chromatin ; 5: 7, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22650316

ABSTRACT

Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.

9.
Nat Genet ; 44(4): 467-70, 2012 Mar 11.
Article in English | MEDLINE | ID: mdl-22406643

ABSTRACT

Traditionally, hybrid seeds are produced by crossing selected inbred lines. Here we provide a proof of concept for reverse breeding, a new approach that simplifies meiosis such that homozygous parental lines can be generated from a vigorous hybrid individual. We silenced DMC1, which encodes the meiotic recombination protein DISRUPTED MEIOTIC cDNA1, in hybrids of A. thaliana, so that non-recombined parental chromosomes segregate during meiosis. We then converted the resulting gametes into adult haploid plants, and subsequently into homozygous diploids, so that each contained half the genome of the original hybrid. From 36 homozygous lines, we selected 3 (out of 6) complementing parental pairs that allowed us to recreate the original hybrid by intercrossing. In addition, this approach resulted in a complete set of chromosome-substitution lines. Our method allows the selection of a single choice offspring from a segregating population and preservation of its heterozygous genotype by generating homozygous founder lines.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Breeding/methods , Cell Cycle Proteins/genetics , Rec A Recombinases/genetics , Base Sequence , Chimera/genetics , Crosses, Genetic , Heterozygote , Homozygote , Meiosis/genetics , Polymorphism, Single Nucleotide , RNA Interference , RNA, Small Interfering , Seeds/genetics , Sequence Alignment
10.
Proc Natl Acad Sci U S A ; 109(11): 4227-32, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22371599

ABSTRACT

Quantitative trait loci (QTL) mapping is a powerful tool for investigating the genetic basis of natural variation. QTL can be mapped using a number of different population designs, but recombinant inbred lines (RILs) are among the most effective. Unfortunately, homozygous RIL populations are time consuming to construct, typically requiring at least six generations of selfing starting from a heterozygous F(1). Haploid plants produced from an F(1) combine the two parental genomes and have only one allele at every locus. Converting these sterile haploids into fertile diploids (termed "doubled haploids," DHs) produces immortal homozygous lines in only two steps. Here we describe a unique technique for rapidly creating recombinant doubled haploid populations in Arabidopsis thaliana: centromere-mediated genome elimination. We generated a population of 238 doubled haploid lines that combine two parental genomes and genotyped them by reduced representation Illumina sequencing. The recombination rate and parental allele frequencies in our population are similar to those found in existing RIL sets. We phenotyped this population for traits related to flowering time and for petiole length and successfully mapped QTL controlling each trait. Our work demonstrates that doubled haploid populations offer a rapid, easy alternative to RILs for Arabidopsis genetic analysis.


Subject(s)
Arabidopsis/genetics , Chromosome Mapping/methods , Haploidy , Quantitative Trait Loci/genetics , Crosses, Genetic , Flowers/genetics , Flowers/physiology , Genetics, Population , Genotyping Techniques , Heterozygote , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Quantitative Trait, Heritable , Recombination, Genetic/genetics , Sequence Analysis, DNA
12.
PLoS Genet ; 7(6): e1002121, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21695238

ABSTRACT

Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Centromere/metabolism , Histones/metabolism , Meiosis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centromere/genetics , Chromosome Segregation , Chromosomes, Plant/genetics , Histones/genetics
13.
Science ; 331(6019): 876, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21330535

ABSTRACT

Cloning through seeds has potential revolutionary applications in agriculture, because it would allow vigorous hybrids to be propagated indefinitely. However, asexual seed formation or apomixis, avoiding meiosis and fertilization, is not found in the major food crops. To develop de novo synthesis of apomixis, we crossed Arabidopsis MiMe and dyad mutants that produce diploid clonal gametes to a strain whose chromosomes are engineered to be eliminated after fertilization. Up to 34% of the progeny were clones of their parent, demonstrating the conversion of clonal female or male gametes into seeds. We also show that first-generation cloned plants can be cloned again. Clonal reproduction through seeds can therefore be achieved in a sexual plant by manipulating two to four conserved genes.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Genetic Engineering , Seeds/genetics , Seeds/physiology , Chromosome Segregation/genetics , Chromosomes, Plant , Crosses, Genetic , Diploidy , Genes, Plant , Heterozygote , Histones/genetics , Meiosis/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Reproduction, Asexual
14.
Epigenetics ; 6(3): 344-54, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21150311

ABSTRACT

De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1, and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Argonaute Proteins , DNA Methylation , Gene Silencing , Genotype , Methyltransferases/genetics , Methyltransferases/metabolism , Mutation , Phenotype , Transgenes
15.
Trends Biotechnol ; 28(12): 605-10, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20933291

ABSTRACT

The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications.


Subject(s)
Arabidopsis/genetics , Breeding/methods , Chromosomes , Genetic Engineering/methods , Plants, Genetically Modified
16.
Genetics ; 186(2): 461-71, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20628040

ABSTRACT

Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Centromere/metabolism , Histones/chemistry , Histones/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Base Sequence , Cell Cycle Proteins/metabolism , Evolution, Molecular , Genetic Complementation Test , Histones/genetics , Kinetochores/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Polymerase Chain Reaction , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Species Specificity , Transgenes
17.
Nature ; 464(7288): 615-8, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20336146

ABSTRACT

Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Centromere/metabolism , Genome, Plant/genetics , Haploidy , Histones/genetics , Histones/metabolism , Cell Nucleus/genetics , Crosses, Genetic , Diploidy
18.
Trends Plant Sci ; 13(7): 383-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18550415

ABSTRACT

Plant gene silencing is targeted to transposons and repeated sequences by small RNAs from the RNA interference (RNAi) pathway. Like classical RNAi, RNA-directed chromatin silencing involves the cleavage of double-stranded RNA by Dicer endonucleases to create small interfering RNAs (siRNAs), which bind to the Argonaute protein. The production of double-stranded RNA (dsRNA) must be carefully controlled to prevent inappropriate silencing. A plant-specific RNA polymerase IV (Pol IV) initiates siRNA production at silent heterochromatin, but Pol IV-independent mechanisms for making dsRNA also exist. Downstream of siRNA biogenesis, multiple chromatin marks might be targeted by Argonaute-siRNA complexes, yet mechanisms of chromatin modification remain poorly understood. Genomic studies of siRNA target loci promise to reveal novel biological functions for chromatin-targeted RNAi.


Subject(s)
Chromatin/metabolism , RNA Interference , RNA, Small Interfering/genetics , Chromatin/genetics , Models, Biological , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Small Interfering/metabolism
19.
PLoS Biol ; 4(11): e363, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17105345

ABSTRACT

Tandem repeat sequences are frequently associated with gene silencing phenomena. The Arabidopsis thaliana FWA gene contains two tandem repeats and is an efficient target for RNA-directed de novo DNA methylation when it is transformed into plants. We showed that the FWA tandem repeats are necessary and sufficient for de novo DNA methylation and that repeated character rather than intrinsic sequence is likely important. Endogenous FWA can adopt either of two stable epigenetic states: methylated and silenced or unmethylated and active. Surprisingly, we found small interfering RNAs (siRNAs) associated with FWA in both states. Despite this, only the methylated form of endogenous FWA could recruit further RNA-directed DNA methylation or cause efficient de novo methylation of transgenic FWA. This suggests that RNA-directed DNA methylation occurs in two steps: first, the initial recruitment of the siRNA-producing machinery, and second, siRNA-directed DNA methylation either in cis or in trans. The efficiency of this second step varies depending on the nature of the siRNA-producing locus, and at some loci, it may require pre-existing chromatin modifications such as DNA methylation itself. Enhancement of RNA-directed DNA methylation by pre-existing DNA methylation could create a self-reinforcing system to enhance the stability of silencing. Tandem repeats throughout the Arabidopsis genome produce siRNAs, suggesting that repeat acquisition may be a general mechanism for the evolution of gene silencing.


Subject(s)
Arabidopsis/genetics , DNA Methylation , Gene Silencing , RNA, Plant/physiology , RNA, Small Interfering/genetics , Tandem Repeat Sequences/genetics , Genome, Plant , Mutation , Transgenes
20.
Nature ; 443(7110): E8; discussion E8-9, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17006468

ABSTRACT

Arising from: S. J. Lolle, J. L. Victor, J. M. Young & R. E. Pruitt 434, 505-509 (2005); Lolle et al. reply. Lolle et al. report that loss-of-function alleles of the HOTHEAD (HTH) gene in Arabidopsis thaliana are genetically unstable, giving rise to wild-type revertants. On the basis of the reversion of many other genetic markers in hth plants, they suggested a model in which a cache of extragenomic information could cause genes to revert to the genotype of previous generations. In our attempts to reproduce this phenomenon, we discovered that hth mutants show a marked tendency to outcross (unlike wild-type A. thaliana, which is almost exclusively self-fertilizing). Moreover, when hth plants are grown in isolation, their genetic inheritance is completely stable. These results may provide an alternative explanation for the genome wide non-mendelian inheritance reported by Lolle et al.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Models, Genetic , Mutation/genetics , Alleles , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...