Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 60(36): 19949-19956, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34128303

ABSTRACT

Carbodicarbene (CDC), unique carbenic entities bearing two lone pairs of electrons are well-known for their strong Lewis basicity. We demonstrate herein, upon introducing a weak Brønsted acid benzyl alcohol (BnOH) as a co-modulator, CDC is remolded into a Frustrated Lewis Pair (FLP)-like reactivity. DFT calculation and experimental evidence show BnOH loosely interacting with the binding pocket of CDC via H-bonding and π-π stacking. Four distinct reactions in nature were deployed to demonstrate the viability of proof-of-concept as synergistic FLP/Modulator (CDC/BnOH), demonstrating enhanced catalytic reactivity in cyclotrimerization of isocyanate, polymerization process for L-lactide (LA), methyl methacrylate (MMA) and dehydrosilylation of alcohols. Importantly, the catalytic reactivity of carbodicarbene is uniquely distinct from conventional NHC which relies on only single chemical feature of nucleophilicity. This finding also provides a new spin in diversifying FLP reactivity with co-modulator or co-catalyst.

2.
Nat Commun ; 10(1): 3473, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375685

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder that manifests with movement dysfunction. The expression of mutant Huntingtin (mHTT) disrupts the functions of brain cells. Galectin-3 (Gal3) is a lectin that has not been extensively explored in brain diseases. Herein, we showed that the plasma Gal3 levels of HD patients and mice correlated with disease severity. Moreover, brain Gal3 levels were higher in patients and mice with HD than those in controls. The up-regulation of Gal3 in HD mice occurred before motor impairment, and its level remained high in microglia throughout disease progression. The cell-autonomous up-regulated Gal3 formed puncta in damaged lysosomes and contributed to inflammation through NFκB- and NLRP3 inflammasome-dependent pathways. Knockdown of Gal3 suppressed inflammation, reduced mHTT aggregation, restored neuronal DARPP32 levels, ameliorated motor dysfunction, and increased survival in HD mice. Thus, suppression of Gal3 ameliorates microglia-mediated pathogenesis, which suggests that Gal3 is a novel druggable target for HD.


Subject(s)
Brain/pathology , Galectin 3/metabolism , Huntington Disease/pathology , Microglia/pathology , Adult , Animals , Blood Proteins , Brain/cytology , Brain/ultrastructure , Disease Models, Animal , Disease Progression , Female , Galectin 3/blood , Galectin 3/genetics , Galectins , Gene Knockdown Techniques , Humans , Huntington Disease/blood , Huntington Disease/diagnosis , Inflammasomes/metabolism , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Mice , Microglia/cytology , Microglia/ultrastructure , Microscopy, Electron, Transmission , Middle Aged , Severity of Illness Index , Up-Regulation
3.
Int J Mol Sci ; 19(2)2018 Jan 29.
Article in English | MEDLINE | ID: mdl-29382172

ABSTRACT

Galectins are ß-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.


Subject(s)
Galectins/chemistry , Quantitative Structure-Activity Relationship , Animals , Binding Sites , Galectins/antagonists & inhibitors , Humans , Molecular Docking Simulation , Protein Binding , Thiogalactosides/chemistry , Thiogalactosides/pharmacology
4.
Front Immunol ; 8: 48, 2017.
Article in English | MEDLINE | ID: mdl-28217127

ABSTRACT

Invasive candidiasis is a leading cause of nosocomial bloodstream infection. Neutrophils are the important effector cells in host resistance to candidiasis. To investigate the modulation of neutrophil fungicidal function will advance our knowledge on the control of candidiasis. While recombinant galectin-3 enhances neutrophil phagocytosis of Candida, we found that intracellular galectin-3 downregulates neutrophil fungicidal functions. Co-immunoprecipitation and immunofluorescence staining reveal that cytosolic gal3 physically interacts with Syk in neutrophils after Candida stimulation. Gal3-/- neutrophils have higher level of Syk activation as well as greater abilities to generate reactive oxygen species (ROS) and kill Candida than gal3+/+ cells. While galectin-3 deficiency modulates neutrophil and macrophage activation and the recruitment of monocytes and dendritic cells, the deficiency does not affect the numbers of infiltrating neutrophils or macrophages. Galectin-3 deficiency ameliorates systemic candidiasis by reducing fungal burden, renal pathology, and mortality. Adoptive transfer experiments demonstrate that cell intrinsic galectin-3 negatively regulates neutrophil effector functions against candidiasis. Reducing galectin-3 expression or activity by siRNA or gal3 inhibitor TD139 enhances human neutrophil ROS production. Mice treated with TD139 have enhanced ability to clear the fungus. Our work unravels the mechanism by which galectin-3 regulates Syk-dependent neutrophil fungicidal functions and raises the possibility that blocking gal3 in neutrophils may be a promising therapeutic strategy for treating systemic candidiasis.

5.
Kaohsiung J Med Sci ; 26(12): 669-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21186016

ABSTRACT

A 77-year-old woman underwent colonoscopic balloon dilatation for colonic stricture 1 year after laparoscopic anterior resection of sigmoid colon cancer. During the balloon dilatation, panfacial swelling and apnea were noted. Emergency endotracheal intubation was undertaken. Chest X-ray revealed diffuse subcutaneous emphysema and bilateral pneumothorax. We discuss the possible mechanism and management of this uncommon complication during therapeutic colonoscopy.


Subject(s)
Catheterization , Colonoscopy , Mediastinal Emphysema/diagnosis , Pneumoperitoneum/diagnosis , Pneumothorax/diagnosis , Subcutaneous Emphysema/diagnosis , Aged , Female , Humans
6.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 1): o98-9, 2010 Dec 11.
Article in English | MEDLINE | ID: mdl-21522807

ABSTRACT

The title compound, C(21)H(15)NO(4), was synthesized by reducing the Schiff base obtained from acenaphthenequinone and ethyl-4-aminobenzoate. The dihedral angle between the essentially planar 1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline ring system [maximum deviation = 0.061 (2) Å] and the benzene ring is 75.08 (10)°. In the crystal, mol-ecules are connected via weak inter-molecular C-H⋯O hydrogen bonds, forming a two-dimensional network. The ethyl group is disordered over two sets of sites with a refined occupancy ratio of 0.502 (12):0.498 (12).

SELECTION OF CITATIONS
SEARCH DETAIL
...