Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-5, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37565472

ABSTRACT

Mexico's Yucatan Peninsula is an endemic area of cutaneous leishmaniasis, locally known as the chiclero's ulcer, and Mayan traditional medicine which refers to the use of Thouinia paucidentata Radlk, known as k'an chuunup. Aqueous and organic leaves extracts were evaluated against promastigotes and amastigotes of Leishmania mexicana. Toxicity tests of extracts were performed using Vero and J774A.1 macrophage cell lines. The composition of the most active extracts was analysed by GC-MS. The n-hexane and ethyl acetate extracts showed potent anti-Leishmania activity against the promastigote form, and remarkably, n-hexane extract exhibited potent activity against the amastigote form. Both extracts showed low toxicity on Vero both not on J774A.1 cells. Analysis of both bioactive extracts identified as more abundant compounds, germacrene D-4-ol and thunbergen in n-hexane, and thunbergol in ethyl acetate extracts. Our study presents T. paucidentata as anti-Leishmania phytomedicine supporting its medicinal use and contributes to the understanding of its phytochemical composition.

2.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36986489

ABSTRACT

Leishmania mexicana (L. mexicana) is a causal agent of cutaneous leishmaniasis (CL), a "Neglected disease", for which the search for new drugs is a priority. Benzimidazole is a scaffold used to develop antiparasitic drugs; therefore, it is interesting molecule against L. mexicana. In this work, a ligand-based virtual screening (LBVS) of the ZINC15 database was performed. Subsequently, molecular docking was used to predict the compounds with potential binding at the dimer interface of triosephosphate isomerase (TIM) of L. mexicana (LmTIM). Compounds were selected on binding patterns, cost, and commercial availability for in vitro assays against L. mexicana blood promastigotes. The compounds were analyzed by molecular dynamics simulation on LmTIM and its homologous human TIM. Finally, the physicochemical and pharmacokinetic properties were determined in silico. A total of 175 molecules with docking scores between -10.8 and -9.0 Kcal/mol were obtained. Compound E2 showed the best leishmanicidal activity (IC50 = 4.04 µM) with a value similar to the reference drug pentamidine (IC50 = 2.23 µM). Molecular dynamics analysis predicted low affinity for human TIM. Furthermore, the pharmacokinetic and toxicological properties of the compounds were suitable for developing new leishmanicidal agents.

3.
Plants (Basel) ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36987062

ABSTRACT

In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 µg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.

4.
World J Microbiol Biotechnol ; 38(12): 254, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36318350

ABSTRACT

This article describes the consolidation effects of bacterial biopolymers synthesized by biofilm bacteria colonizing Mayan limestone buildings on the surface properties of limestone blocks, including disaggregation, hardness, and total color change at the laboratory level. The biopolymers evaluated, produced by bacterial isolates TM1B-488, TM1B-489, TM1B-349, and TM1B-464, influenced surface properties at different levels. 16S rRNA gene sequences analysis showed that isolate TM1B-349 was related with Psychrobacter sp. strain Marseille P-5312, TM1B-464 was related with Agrococcus terreus strain BT116, and isolates TM1B-488 and TM1B-489 were related with Xanthomonas citri pv. mangiferaeindicae strain XC01. Biopolymer A reduced the surface disaggregation of the material (26%) compared to the untreated control, as revealed by the peeling test, followed by biopolymer B (10%), while the remaining biopolymers had a negligible effect. The cactus biopolymer reduced disaggregation at higher levels (37%). On the other hand, there was a similar concomitant increase in surface hardness of limestone samples coated with biopolymer A (34%) and biopolymer B (32%), higher than biopolymers C (10%) and D (19%). Total color change for all treatments was below the threshold value of 5, indicating a non-significant color alteration. Partial chemical characterization of best-performing biopolymer (A) suggests its probable glycoprotein nature, whose constitutive acidic monosaccharides probably contributed to higher adherence to the limestone surfaces, contributing to surface stabilization, hardening the surface, and decreasing surface decohesion. These preliminary findings suggest its potential application in bioconsolidants, but further studies are required.


Subject(s)
Bacteria , Calcium Carbonate , RNA, Ribosomal, 16S/genetics , Biopolymers/chemistry , Biofilms
5.
Front Chem ; 9: 725892, 2021.
Article in English | MEDLINE | ID: mdl-34604170

ABSTRACT

World Health Organization (WHO) identified twenty tropical disease categories as neglected tropical diseases (NTDs). Chagas' disease (also known as American trypanosomiasis) and leishmaniasis are two major classes of NTDs. The total number of mortality, morbidity, and disability attributed each year due to these two categories of diseases in magnitudes is much higher than the so-called elite diseases like cancer, diabetes, AIDS, cardiovascular and neurodegenerative diseases. Impoverished communities around the world are the major victim of NTDs. The development of new and novel drugs in the battle against Chagas' disease and leishmaniasis is highly anticipated. An easy and straightforward on-water green access to synthesize benzopyrazines is reported. This ultrasound-assisted procedure does not require any catalyst/support/additive/hazardous solvents and maintains a high atom economy. A series of eleven benzopyrazines has been synthesized, and most of the synthesized compounds possess the drug-likeness following Lipinski's "Rule of 5". Benzopyrazines 3 and 4 demonstrated moderate leishmanicidal activity against L. mexicana (M378) strain. The selective lead compound 1 showed good leishmanicidal, and trypanocidal activities (in vitro) against both L. mexicana (M378) and T. cruzi (NINOA) strains compared to the standard controls. The in vitro trypanocidal and leishmanicidal activities of the lead compound 1 have been validated by molecular docking studies against four biomolecular drug targets viz. T. cruzi histidyl-tRNA synthetase, T. cruzi trans-sialidase, leishmanial rRNA A-site, and leishmania major N-myristoyl transferase.

6.
Molecules ; 26(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806654

ABSTRACT

Trypanosomatids are the causative agents of leishmaniasis and trypanosomiasis, which affect about 20 million people in the world's poorest countries, leading to 95,000 deaths per year. They are often associated with malnutrition, weak immune systems, low quality housing, and population migration. They are generally recognized as neglected tropical diseases. New drugs against these parasitic protozoa are urgently needed to counteract drug resistance, toxicity, and the high cost of commercially available drugs. Microbial bioprospecting for new molecules may play a crucial role in developing a new generation of antiparasitic drugs. This article reviews the current state of the available literature on chemically defined metabolites of microbial origin that have demonstrated antitrypanosomatid activity. In this review, bacterial and fungal metabolites are presented; they originate from a range of microorganisms, including cyanobacteria, heterotrophic bacteria, and filamentous fungi. We hope to provide a useful overview for future research to identify hits that may become the lead compounds needed to accelerate the discovery of new drugs against trypanosomatids.


Subject(s)
Antiprotozoal Agents/therapeutic use , Bacteria/chemistry , Fungi/chemistry , Leishmaniasis/drug therapy , Trypanosomatina/physiology , Trypanosomiasis/drug therapy , Animals , Humans , Leishmaniasis/metabolism , Trypanosomiasis/metabolism
7.
J Med Entomol ; 56(6): 1598-1604, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31287880

ABSTRACT

The inhibitory effect of Chrysomya rufifacies (Macquart) and Cochliomyia macellaria (Fabricius) larval excretions-secretions (ES) on Staphylococcus aureus was determined using a portable colorimetric method without the need for any dedicated spectral instrument. Polystyrene 96 well microplates were used and 100 µl of the bacterial inoculum (5 × 105 CFU/ml) plus 100 µl of the dipteran exosecretions at different concentrations were added to each well. Subsequently, 50 µl of a 1% solution of the triphenyl tetrazolium chloride stain was added to each well to determine the bacterial viability. The color development in each well was measured with the ImageJ software S. aureus was exposed to different concentrations of the ES of both species individually. At a concentration of 800 ppm ES of C. rufifacies or Co. macellaria, bacterial growth was inhibited 97.45 ± 1.70% and 82.21 ± 1.88%, respectively. As expected, exposure to a lower concentration (i.e., 50 ppm) was less inhibitory (C. rufifacies ES, 77.65 ± 4.25% and Co. macellaria ES, 43.54 ± 4.63%). This study demonstrates for the first time the bactericidal activity of C. rufifacies and Co. macellaria ES against S. aureus. This finding is promising as it could result in the identification and synthesis of proteins capable of suppressing pathogen development in wounds. Additionally, the proposed method can simplify the use of expensive laboratory instruments for antimicrobial activity determination.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diptera/chemistry , Staphylococcus aureus/drug effects , Animals , Bodily Secretions/chemistry , Diptera/growth & development , Larva/chemistry , Larva/growth & development , Species Specificity
8.
J Med Entomol ; 56(1): 261-267, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30239790

ABSTRACT

Culex quinquefasciatus Say (Diptera: Culicidae), an arboviral and filarial vector, is one of the most widespread mosquitoes in the world. The indiscriminate use of synthetic chemical insecticides has led to the development of resistance in mosquito populations worldwide. The effect of continuous exposure to crude extracts of Argemone mexicana, the Mexican poppy, on the development and growth stages of second-instar larvae of the mosquito was studied, along with qualitative chemical analysis of the different plant parts. Inhibition, mortality, and larval and pupal duration phases were assessed. Second-instar mosquito larvae were exposed to crude ethanol extracts of flowers, stems, and seeds. Flower extract exhibited the strongest larvicidal activity with LC50 and LC90 values after 24 h of exposure of 18.61 and 39.86 ppm, respectively, and 9.47 and 21.76 ppm after 48 h. Extracts from stem and seeds were significantly less effective. The flower extract registered a Growth Inhibition Index of 0.01 at 25 ppm, with stems and seeds registering 0.05 and 0.08, respectively, at 100 ppm (control group 1.02). Qualitative chemical analysis by thin-layer chromatography showed characteristic spots indicating the presence of alkaloids and flavonoids and phytochemical screening showed the presence of alkaloids, anthraquinones, flavonoids, tannins, and terpenoids in the various crude extracts. This is the first report of the effectiveness of an ethanol flower extract of A. mexicana on Cx. quinquefasciatus; it can be considered a promising alternative control for this mosquito species.


Subject(s)
Argemone , Culex , Mosquito Control , Plant Extracts , Animals , Female , Larva , Toxicity Tests
9.
Comput Biol Chem ; 76: 264-274, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30092449

ABSTRACT

The present work highlightsthe synthesis of a newer biologically active Mannich bases contributing 4-((4-fluorobenzylidene)amino)-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol and various heterocyclic amines via N-Mannich reaction by the conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 4k was found to be most active respectively against S. aureus (MIC 12.5 µM) and C. albicans (MIC 100 µM). The derivative 4 g displayed potency against L.mexicana and T. cruzi with IC50 value 1.01 and 3.33 µM better than reference drug Miltefosina and Nifurtimox. The compound 4b displayed excellent potency against M. tuberculosis (MIC 6.25 µM) in the primary screening. The computational studies revealed for that Mannich derivative (4b) showed a high affinity toward the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski's parameters showed good drug-likeness properties and can be developed as an oral drug candidate.


Subject(s)
Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Antitubercular Agents/pharmacology , Mannich Bases/pharmacology , Triazoles/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Catalytic Domain , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Leishmania mexicana/drug effects , Mannich Bases/chemical synthesis , Mannich Bases/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Trypanosoma cruzi/drug effects
10.
Article in English | MEDLINE | ID: mdl-29439486

ABSTRACT

Cadmium is a major heavy metal found in polluted aquatic environments, mainly derived from industrial production processes. We evaluated the biosorption of solubilized Cd2+ using the extracellular polymeric substances (EPS) produced by Bacillus sp. MC3B-22 and Microbacterium sp. MC3B-10 (Microbactan); these bacteria were originally isolated from intertidal biofilms off the coast of Campeche, Mexico. EPS were incubated with different concentrations of cadmium in ultrapure water. Residual Cd2+ concentrations were determined by Inductive Coupled Plasma-Optic Emission Spectrometry and the maximum sorption capacity (Qmax) was calculated according to the Langmuir model. EPS were characterized by X-ray photoelectron spectroscopy (XPS) before and after sorption. The Qmax of Cd2+ was 97 mg g-1 for Microbactan and 141 mg g-1 for MC3B-22 EPS, these adsorption levels being significantly higher than previously reported for other microbial EPS. In addition, XPS analysis revealed changes in structure of EPS after biosorption and showed that amino functional groups contributed to the binding of Cd2+, unlike other studies that show the carbohydrate fraction is responsible for this activity. This work expands the current view of bacterial species capable of synthesizing EPS with biosorbent potential for cadmium and provides evidence that different chemical moieties, other than carbohydrates, participate in this process.


Subject(s)
Biopolymers/chemistry , Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Actinobacteria/metabolism , Adsorption , Bacillus/metabolism , Biofilms , Biopolymers/metabolism , Mexico
11.
Bioorg Med Chem Lett ; 27(15): 3490-3494, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28645659

ABSTRACT

We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 1-5 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC50 values ranging from the low micromolar to nanomolar order. Compounds 1-5 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC50 of 0.145µM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709µg/kg (3.53nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 1-5 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Giardia lamblia/drug effects , Giardiasis/drug therapy , Thiazoles/chemistry , Thiazoles/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Drug Design , Female , Humans , Leishmania/drug effects , Mice , Nitro Compounds , Protozoan Infections/drug therapy , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Trichomonas vaginalis/drug effects , Trypanosoma cruzi/drug effects
12.
Med Chem ; 13(2): 137-148, 2017.
Article in English | MEDLINE | ID: mdl-27527618

ABSTRACT

BACKGROUND: We designed hybrid molecules between propamidine and benzimidazole in order to retain the antiprotozoal action, but decreasing the toxic effect of the molecule. OBJECTIVE: Design and prepare 12 hybrids for testing their antiparasitic effect over three protozoa: Giardia intestinalis, Trichomonas vaginalis and Leishmania mexicana, as well as conduct several in silico simulations such as toxicological profile, molecular docking and molecular dynamics in order to understand their potential mode of action. METHODS: Hybrids 1-3, 6-9 and 12 were obtained using a chemical pathway previously reported. Compounds 4, 5, 10 and 11 were prepared using a one-pot reduction-cyclization reaction. The in vitro antiparasitic and cytotoxic activities of these compounds were conducted. It was calculated several properties such as toxicity, PK behavior, as well as docking studies and molecular dynamics of the most active compound performed in a DNA sequence dodecamer in comparison with propamidine. RESULTS: Compound 2 was 183, 127 and 202 times more active against G. intestinalis than metronidazole, pentamidine and propamidine. It was eleven times more active than pentamidine against L. mexicana. This compound showed low in vitro mammalian cytotoxicity. Molecular simulations showed a stable complex 2-DNA that occurred in the minor groove, analogous to propamidine-DNA complex. CONCLUSION: Compound 2, exhibited the higher bioactivity, especially towards G. intestinalis and L. mexicana. This study demonstrated that the replacement of benzimidazole scaffold instead of toxic amidine group in propamidine, results in an enhancement of antiprotozoal bioactivity. The preliminary molecular dynamics simulation suggests that the ligand-DNA complex is stable.


Subject(s)
Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/pharmacology , Benzamidines/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Computer Simulation , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/toxicity , Chemistry Techniques, Synthetic , Chlorocebus aethiops , DNA/chemistry , DNA/metabolism , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , Structure-Activity Relationship , Vero Cells
13.
Front Microbiol ; 7: 201, 2016.
Article in English | MEDLINE | ID: mdl-26941725

ABSTRACT

Soil and rock surfaces support microbial communities involved in mineral weathering processes. Using selective isolation, fungi were obtained from limestone surfaces of Mayan monuments in the semi-arid climate at Yucatan, Mexico. A total of 101 isolates representing 53 different taxa were studied. Common fungi such as Fusarium, Pestalotiopsis, Trichoderma, and Penicillium were associated with surfaces and were, probably derived from airborne spores. In contrast, unusual fungi such as Rosellinia, Annulohypoxylon, and Xylaria were predominantly identified from mycelium particles of biofilm biomass. Simulating oligotrophic conditions, agar amended with CaCO3 was inoculated with fungi to test for carbonate activity. A substantial proportion of fungi, in particular those isolated from mycelium (59%), were capable of solubilizing calcium by means of organic acid release, notably oxalic acid as evidenced by ion chromatography. Contrary to our hypothesis, nutrient level was not a variable influencing the CaCO3 solubilization ability among isolates. Particularly active fungi (Annulohypoxylon stygium, Penicillium oxalicum, and Rosellinia sp.) were selected as models for bioweathering experiments with limestone-containing mesocosms to identify if other mineral phases, in addition to oxalates, were linked to bioweathering processes. Fungal biofilms were seen heavily covering the stone surface, while a biomineralized front was also observed at the stone-biofilm interface, where network of hyphae and mycogenic crystals was observed. X-ray diffraction analysis (XRD) identified calcite as the main phase, along with whewellite and wedellite. In addition, lower levels of citrate were detected by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR). Overall, our results suggest that a diverse fungal community is associated with limestone surfaces insemi-arid climates. A subset of this community is geochemically active, excreting organic acids under quasi-oligotrophic conditions, suggesting that the high metabolic cost of exuding organic acids beneficial under nutrient limitation. Oxalic acid release may deteriorate or stabilize limestone surfaces, depending on microclimatic dynamics.

14.
J Chromatogr A ; 1422: 213-221, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26515384

ABSTRACT

This work describes the use of Colubrina greggii as a model to investigate the use of chemometric analysis combined with data from a leishmanicidal bioassay, using Principal Component Analysis (PCA) and Orthogonal Projections to Latent Structures (O-PLS), to detect biologically active natural products in crude extracts from plants having little or no phytochemical information. A first analysis of the HPLC-UV profiles of the extract and its semi-purified fractions using both Principal Component Analysis (PCA) and Orthogonal Partial Least Squares (O-PLS) indicated that the components at tR 48.2, 48.7, 51.8min correlated with the variation in bioactivity. However, a further O-PLS analysis of the HPLC-UV profiles of fractions obtained through a final semi-preparative HPLC purification showed two components at tR 48.7 and 49.5min which correlated with the variation of the bioactivity in a high performance predictive model, with high determination coefficient, high correlation coefficient values (R(2) and Q(2)=0.99) and a low root mean square error (RMSE=0.018). This study demonstrates that the association of chemometric analysis with bioassay results can be an excellent strategy for the detection and isolation of bioactive metabolites from phytochemically unknown plant crude extracts.


Subject(s)
Phytochemicals/metabolism , Plant Extracts/metabolism , Antiparasitic Agents/isolation & purification , Antiparasitic Agents/metabolism , Antiparasitic Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Colubrina/chemistry , Colubrina/metabolism , Complex Mixtures , Least-Squares Analysis , Leishmania mexicana/drug effects , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal , Principal Component Analysis , Ultraviolet Rays
15.
J Org Chem ; 79(7): 2864-73, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24606167

ABSTRACT

The biosynthesis of lupeol-3-(3'R-hydroxy)-stearate (procrim b, 1) was investigated in the Mexican medicinal plant Pentalinon andrieuxii by (13)CO2 pulse-chase experiments. NMR analyses revealed positional enrichments of (13)C2-isotopologues in both the triterpenoid and the hydroxystearate moieties of 1. Five of the six isoprene units reflected a pattern with [1,2-(13)C2]- and [3,5-(13)C2]-isotopologues from the respective C5-precursors, IPP and DMAPP, whereas one isoprene unit in the ring E of 1 showed only the [3,5-(13)C2]-connectivity of the original C5-precursor, due to rearrangement of the dammarenyl cation intermediate during the cyclization process. The presence of (13)C2-isotopologues was indicative of [(13)C2]acetyl-CoA being the precursor units in the formation of the fatty acid moiety and of the triterpene via the mevalonate route. The observed labeling pattern was in agreement with a chair-chair-chair-boat conformation of the (S)-2,3-oxidosqualene precursor during the cyclization process, suggesting that the lupeol synthase from P. andrieuxii is of the same type as that from Olea europea and Taraxacum officinale, but different from that of Arabidopsis thaliana. The study shows that (13)CO2 pulse-chase experiments are powerful in elucidating, under in vivo conditions and in a single experiment, the biosynthesis of complex plant products including higher terpenes.


Subject(s)
Carbon Isotopes/chemistry , Intramolecular Transferases/chemistry , Olea/chemistry , Pentacyclic Triterpenes/biosynthesis , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/chemical synthesis , Squalene/analogs & derivatives , Squalene/chemistry , Stearates/chemical synthesis , Taraxacum/chemistry , Triterpenes/chemical synthesis , Amino Acid Sequence , Cyclization , Magnetic Resonance Spectroscopy , Squalene/chemical synthesis , Stearates/chemistry , Triterpenes/chemistry
16.
Bioorg Med Chem ; 22(5): 1626-33, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24529307

ABSTRACT

The 2-acylamino-5-nitro-1,3-thiazole derivatives (1-14) were prepared using a one step reaction. All compounds were tested in vitro against four neglected protozoan parasites (Giardia intestinalis, Trichomonas vaginalis, Leishmania amazonensis and Trypanosoma cruzi). Acetamide (9), valeroylamide (10), benzamide (12), methylcarbamate (13) and ethyloxamate (14) derivatives were the most active compounds against G. intestinalis and T. vaginalis, showing nanomolar inhibition. Compound 13 (IC50=10nM), was 536-times more active than metronidazole, and 121-fold more effective than nitazoxanide against G. intestinalis. Compound 14 was 29-times more active than metronidazole and 6.5-fold more potent than nitazoxanide against T. vaginalis. Ureic derivatives 2, 3 and 5 showed moderate activity against L. amazonensis. None of them were active against T. cruzi. Ligand efficiency indexes analysis revealed higher intrinsic quality of the most active 2-acylamino derivatives than nitazoxanide and metronidazole. In silico toxicity profile was also computed for the most active compounds. A very low in vitro mammalian cytotoxicity was obtained for 13 and 14, showing selectivity indexes (SI) of 246,300 and 141,500, respectively. Nitazoxanide showed an excellent leishmanicidal and trypanocidal effect, repurposing this drug as potential new antikinetoplastid parasite compound.


Subject(s)
Antiprotozoal Agents/pharmacology , Protozoan Infections/immunology , Thiazoles/chemistry , Animals , Drug Design , Humans
17.
Int J Mol Sci ; 14(9): 18959-72, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24065097

ABSTRACT

A previously reported bacterial bioemulsifier, here termed microbactan, was further analyzed to characterize its lipid component, molecular weight, ionic character and toxicity, along with its bioemulsifying potential for hydrophobic substrates at a range of temperatures, salinities and pH values. Analyses showed that microbactan is a high molecular weight (700 kDa), non-ionic molecule. Gas chromatography of the lipid fraction revealed the presence of palmitic, stearic, and oleic acids; thus microbactan may be considered a glycolipoprotein. Microbactan emulsified aromatic hydrocarbons and oils to various extents; the highest emulsification index was recorded against motor oil (96%). The stability of the microbactan-motor oil emulsion model reached its highest level (94%) at 50 °C, pH 10 and 3.5% NaCl content. It was not toxic to Artemia salina nauplii. Microbactan is, therefore, a non-toxic and non-ionic bioemulsifier of high molecular weight with affinity for a range of oily substrates. Comparative phylogenetic assessment of the 16S rDNA gene of Microbacterium sp. MC3B-10 with genes derived from other marine Microbacterium species suggested that this genus is well represented in coastal zones. The chemical nature and stability of the bioemulsifier suggest its potential application in bioremediation of marine environments and in cosmetics.


Subject(s)
Actinomycetales/metabolism , Emulsifying Agents/metabolism , Actinomycetales/classification , Animals , Artemia/drug effects , Biodegradation, Environmental , Emulsifying Agents/chemistry , Emulsifying Agents/toxicity , Hydrocarbons, Aromatic/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Oils/chemistry , Oleic Acid/chemistry , Palmitic Acid/chemistry , Phylogeny , Stearic Acids/chemistry , Temperature
18.
Parasitol Res ; 112(2): 559-66, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23086442

ABSTRACT

A total of 82 fungal extracts were selected and screened against Mycobacterium tuberculosis and promastigotes of Leishmania mexicana strains. Results showed inhibitory activity in 29 % of the fungal strains against at least one of the targets tested. The most significant antituberculosis (antiTB) effects were presented by Cylindrocarpon sp. XH9B, Fusarium sp. TA54, Fusarium XH1Ga, Gliocladium penicillioides TH04 and TH21, Gliocladium sp. TH16, Kutilakesa sp. MR46, and Verticillium sp. TH28 strains (minimal inhibition concentration (MIC) = 1.56-25 µg/ml). Mortality of L. mexicana promastigotes was displayed by only four strains, Fusarium sp. TA50, Fusarium sp. TA54, Verticillium sp. TH28, and the unidentified 2TA2 strain (IC(50) = 14.23-100 µg/ml and IC(100) = 50-100 µg/ml). Seven of these most active strains were defatted and their corresponding fractions evaluated again. The results showed the best antiTB activity in Gliocladium sp. TH16 (MIC = 1.56 µg/ml) and the highest leishmanicidal potential in Fusarium sp. TA54 (IC(50) = 6.36 µg/ml). These results show that fungi living in the tropical regions of México have the ability to produce bioactive metabolites that could be used in the near future as natural products to control neglected tropical diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Antitubercular Agents/pharmacology , Fungi/chemistry , Leishmania mexicana/drug effects , Mycobacterium tuberculosis/drug effects , Antiprotozoal Agents/isolation & purification , Antitubercular Agents/isolation & purification , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Mexico , Microbial Sensitivity Tests , Tropical Climate
19.
Parasitol Res ; 111(1): 451-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22371270

ABSTRACT

The bioassay-guided phytochemical investigation of the leaf extract of Serjania yucatanensis, a woody climbing plant endemic to the Yucatan peninsula, led to the identification of a mixture of a triterpene [lup-20(29)-en-3-one] and an oxygenated sesquiterpene (ß-caryophyllene oxide), as that responsible for the originally detected trypanocidal activity in the organic crude extract. Results showed that the mixture of lup-20(29)-en-3-one and ß-caryophyllene oxide is active against trypomastigotes of Trypanosoma cruzi (IC(50) =80.3 µg/mL) and inhibits the egress of trypomastigotes from infected Vero cells (when tested at 100 µg/mL) without being cytotoxic.


Subject(s)
Antiprotozoal Agents/pharmacology , Plant Extracts/pharmacology , Sapindaceae/chemistry , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Biological Assay , Chlorocebus aethiops , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Sesquiterpenes/analysis , Sesquiterpenes/pharmacology , Triterpenes/analysis , Triterpenes/pharmacology , Vero Cells
20.
Parasitol Res ; 110(1): 31-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21584629

ABSTRACT

Ethanol extracts of Senna villosa, Serjania yucatanensis, Byrsonima bucidaefolia, and Bourreria pulchra were evaluated for their in vitro activity against epimastigotes and trypomastigotes of Trypanosoma cruzi. Results showed that the leaf extracts of S. yucatanensis and B. pulchra were the most active against epimastigotes (IC(100) = 100 µg/mL) and trypomastigotes of T. cruzi (95% or more reduction in the number of parasites at 100 and 50 µg/mL). However, only the leaf extract of S. yucatanensis showed significant trypanocidal activity when tested in vivo, reducing 75% of the parasitemia in infected mice at 100 mg/kg. This same extract inhibited the egress of trypomastigotes from infected cells and proved not to be cytotoxic (IC(50) = 318.8 ± 2.3 µg/mL).


Subject(s)
Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacology , Ferns/chemistry , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/isolation & purification , Chagas Disease/drug therapy , Disease Models, Animal , Female , Humans , Inhibitory Concentration 50 , Mexico , Mice , Mice, Inbred BALB C , Parasitemia/drug therapy , Parasitic Sensitivity Tests , Plant Extracts/isolation & purification , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...