Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 195(6): 762, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37249656

ABSTRACT

As a sequel to our recent study on the oxidation by O2, i. e., autoxidation of dissolved hydrogen sulfide, H2S, in aqueous medium, we present here the results of a similar study in rain water medium. The rainwater sampling was done sequentially for four years (2016-2019). In all 67 samples of rainwater were collected on event basis during monsoon period (June-October) in and around the Campus of University of Rajasthan, Jaipur (26°50̛ N-75°52̛ E), which is situated in a semi-arid region adjacent to the Thar Desert in the North-Western part of the India having an annual average rainfall of 54 cm. ICP-MS technique was used in the analysis of rainwater and more than 30 metals were detected, which included transition metals, rare earths, less common metals. Beryllium, vanadium, silver, selenium, manganese, cerium, gallium, yttrium, barium, cesium, copper, rubidium, arsenic, lanthanum, cadmium, lead, uranium and bismuth were common to all rain water samples.H2S oxidation by dissolved oxygen was studied in rainwater as well as in laboratory water media for comparison. The kinetics rate law was: -d[O2]/dt = k1K1[H+][S][O2]t/( [H+]2 + K1[H+] + K1K2), where K1 is first dissociation constant of H2S and k1 is the rate constant for the dominant reaction step:HS- + O2 → products.


Subject(s)
Hydrogen Sulfide , Metals, Heavy , Hydrogen Sulfide/analysis , Oxygen/analysis , Kinetics , Environmental Monitoring , Silver/analysis , Rain , Water/analysis , Metals, Heavy/analysis
2.
Environ Sci Pollut Res Int ; 23(17): 17380-92, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27230141

ABSTRACT

The automobile exhausts are one of the major sources of particulate matter in urban areas and these particles are known to influence the atmospheric chemistry in a variety of ways. Because of this, the oxidation of dissolved sulfur dioxide by oxygen was studied in aqueous suspensions of particulates, obtained by scraping the particles deposited inside a diesel truck exhaust pipe (DEP). A variation in pH showed the rate to increase with increase in pH from 5.22 to about ∼6.3 and to decrease thereafter becoming very slow at pH = 8.2. In acetate-buffered medium, the reaction rate was higher than the rate in unbuffered medium at the same pH. Further, the rate was found to be higher in suspension than in the leachate under otherwise identical conditions. And, the reaction rate in the blank reaction was the slowest. This appears to be due to catalysis by leached metal ions in leachate and due to catalysis by leached metal ions and particulate surface both in suspensions. The kinetics of dissolved SO2 oxidation in acetate-buffered medium as well as in unbuffered medium at pH = 5.22 were defined by rate law: k obs = k 0 + k cat [DEP], where k obs and k 0 are observed rate constants in the presence and the absence of DEP and k cat is the rate constant for DEP-catalyzed pathway. At pH = 8.2, the reaction rate was strongly inhibited by DEP in buffered and unbuffered media. Results suggest that the DEP would have an inhibiting effect in those areas where rainwater pH is 7 or more. These results at high pH are of particular significance to the Indian subcontinent, because of high rainwater pH. Conversely, it indicates the DEP to retard the oxidation of dissolved SO2 and control rainwater acidification.


Subject(s)
Oxygen/chemistry , Sulfur Dioxide/chemistry , Vehicle Emissions/analysis , Catalysis , Kinetics , Motor Vehicles , Oxidation-Reduction , Particle Size , Particulate Matter/analysis
3.
Environ Monit Assess ; 166(1-4): 69-77, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19479331

ABSTRACT

The study area Jaipur, the capital of Rajasthan, is one of the famous metropolises in India. In order to know the suitability of groundwater for domestic and irrigation purposes in Jaipur City, groundwater samples were composed of 15 stations during post-monsoon time of the year 2007-2008 (Nov 2007 to Feb 2008) and were analyzed for physicochemical characters. The physicochemical parameters of groundwater participate a significant role in classifying and assessing water quality. A preliminary characterization, carried out using the piper diagram, shows the different hydrochemistry of the sampled groundwater. This diagram shows that most of the groundwater samples fall in the field of calcium-magnesium-chloride-sulfate type (such water has permanent hardness) of water. Data are plotted on the US Salinity Laboratory diagram, which illustrates that most of the groundwater samples fall in the field of C2S1 and C3S1, which can be used for irrigation on almost all type of soil with little danger of exchangeable sodium. Based on the analytical results, chemical indices like %Na, SAR, and RSC were calculated which show that most of the samples are good for irrigation.


Subject(s)
Environmental Monitoring , Fresh Water/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Calcium/analysis , Chemical Phenomena , Chlorides/analysis , Cities , Fluorides/analysis , Hydrogen-Ion Concentration , India , Magnesium/analysis , Nitrates/analysis , Sulfates/analysis
4.
Environ Monit Assess ; 143(1-3): 337-43, 2008 Aug.
Article in English | MEDLINE | ID: mdl-17882522

ABSTRACT

A study was conducted to evaluate the water quality of Jaipur City. Groundwater samples from hand pumps and tube wells of eleven sampling stations were analyzed during monsoon session with the help of standard methods of APHA. The analytical results shows higher concentration of total dissolved solids, electrical conductivity, total hardness and nitrate, which indicate signs of deterioration but values of pH, calcium, magnesium, sulphate and fluoride are within permissible limit as per WHO standards. From the Hill-Piper trilinear diagram, it is observed that the majority of ground water from sampling stations are calcium-magnesium-chloride-sulphate type water. The values of sodium absorption ratio and electrical conductivity of the ground water were plotted in the US salinity laboratory diagram for irrigation water. Most of the samples fall in C3S1 quality with high salinity hazard and low sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation (in meq/l) is in order magnesium > sodium > calcium > potassium while for the anion (in meq/l) it is chloride > bicarbonate > sulphate > nitrate > carbonate > fluoride.


Subject(s)
Fresh Water/analysis , Water Supply/analysis , Hydrogen-Ion Concentration , India , Water Supply/standards
SELECTION OF CITATIONS
SEARCH DETAIL