Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873460

ABSTRACT

Synapse maintenance is essential for generating functional circuitry and decrement in this process is a hallmark of neurodegenerative disease. While we are beginning to understand the basis of synapse formation, much less is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in CSPα KO brain. Significantly all neurons in CSPα KO brains show strong signatures of repression in synaptic pathways, while upregulating autophagy related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, including the classical Neurexin1-Neuroligin 1 pair, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice in an attempt to achieve synapse maintenance. Together, this study reveals unique cellular and molecular transcriptional changes in CSPα KO cortex and provides new insights into synapse maintenance and neurodegeneration.

2.
iScience ; 26(10): 107842, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766983

ABSTRACT

Auxilin (DNAJC6/PARK19), an endocytic co-chaperone, is essential for maintaining homeostasis in the readily releasable pool (RRP) by aiding clathrin-mediated uncoating of synaptic vesicles. Its loss-of-function mutations, observed in familial Parkinson's disease (PD), lead to basal ganglia motor deficits and cortical dysfunction. We discovered that auxilin-knockout (Aux-KO) mice exhibited impaired pre-synaptic plasticity in layer 4 to layer 2/3 pyramidal cell synapses in the primary visual cortex (V1), including reduced short-term facilitation and depression. Computational modeling revealed increased RRP refilling during short repetitive stimulation, which diminished during prolonged stimulation. Silicon probe recordings in V1 of Aux-KO mice demonstrated disrupted visual cortical circuit responses, including reduced orientation selectivity, compromised visual mismatch negativity, and shorter visual familiarity-evoked theta oscillations. Pupillometry analysis revealed an impaired optokinetic response. Auxilin-dependent pre-synaptic endocytosis dysfunction was associated with deficits in pre-synaptic plasticity, visual cortical functions, and eye movement prodromally or at the early stage of motor symptoms.

3.
J Biol Chem ; 299(9): 105091, 2023 09.
Article in English | MEDLINE | ID: mdl-37516240

ABSTRACT

α-Synuclein and family members ß- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αßγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.


Subject(s)
Clathrin , Monomeric Clathrin Assembly Proteins , alpha-Synuclein , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cell Membrane/metabolism , Clathrin/chemistry , Clathrin/metabolism , Endocytosis , Microscopy, Immunoelectron , Monomeric Clathrin Assembly Proteins/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Synaptosomes/metabolism , Protein Transport , In Vitro Techniques , Phosphatidylinositol 4,5-Diphosphate/metabolism , Brain/cytology , Clathrin-Coated Vesicles/metabolism
4.
Cell Rep ; 42(3): 112231, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36920906

ABSTRACT

Auxilin participates in the uncoating of clathrin-coated vesicles (CCVs), thereby facilitating synaptic vesicle (SV) regeneration at presynaptic sites. Auxilin (DNAJC6/PARK19) loss-of-function mutations cause early-onset Parkinson's disease (PD). Here, we utilized auxilin knockout (KO) mice to elucidate the mechanisms through which auxilin deficiency and clathrin-uncoating deficits lead to PD. Auxilin KO mice display cardinal features of PD, including progressive motor deficits, α-synuclein pathology, nigral dopaminergic loss, and neuroinflammation. Significantly, treatment with L-DOPA ameliorated motor deficits. Unbiased proteomic and neurochemical analyses of auxilin KO brains indicated dopamine dyshomeostasis. We validated these findings by demonstrating slower dopamine reuptake kinetics in vivo, an effect associated with dopamine transporter misrouting into axonal membrane deformities in the dorsal striatum. Defective SV protein sorting and elevated synaptic autophagy also contribute to ineffective dopamine sequestration and compartmentalization, ultimately leading to neurodegeneration. This study provides insights into how presynaptic endocytosis deficits lead to dopaminergic vulnerability and pathogenesis of PD.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/pathology , Synaptic Vesicles/metabolism , Auxilins/genetics , Auxilins/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Proteomics , Protein Transport , Substantia Nigra/metabolism
5.
J Neurosci ; 43(6): 1051-1071, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36596700

ABSTRACT

Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.


Subject(s)
Olfaction Disorders , Parkinson Disease , Male , Female , Mice , Humans , Animals , Parkinson Disease/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Smell , Proteomics , Mice, Transgenic , Neurogenesis , Olfaction Disorders/genetics , Disease Models, Animal
6.
ACS Chem Neurosci ; 14(1): 119-135, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36521179

ABSTRACT

Ariadne is a non-hallucinogenic analog in the phenylalkylamine chemical class of psychedelics that is closely related to an established synthetic hallucinogen, 2,5-dimethoxy-4-methyl-amphetamine (DOM), differing only by one methylene group in the α-position to the amine. Ariadne has been tested in humans including clinical trials at Bristol-Myers Company that indicate a lack of hallucinogenic effects and remarkable therapeutic effects, such as rapid remission of psychotic symptoms in schizophrenics, relaxation in catatonics, complete remission of symptoms in Parkinson's disease (PD), and improved cognition in geriatric subjects. Despite these provocative clinical results, the compound has been abandoned as a drug candidate and its molecular pharmacology remained unknown. Here, we report a detailed examination of the in vitro and in vivo pharmacology of Ariadne and its analogs, and propose a molecular hypothesis for the lack of hallucinogenic effects and the therapeutic potential of this compound class. We also provide a summary of previous clinical and preclinical results to contextualize the molecular signaling data. Our results show that Ariadne is a serotonin 5-HT2 receptor agonist, exhibits modest selectivity over 5-HT1 receptors, has no relevant activity at 5-HT4,5,7 and other aminergic receptors, and no substantial affinity at plasma membrane monoamine transporters. Compared to DOM, Ariadne shows lower signaling potency and efficacy in multiple signaling pathways examined (Gq, G11, and ß-arrestin2) coupled to 5-HT2A receptors. We confirmed the shift in signaling for an α-propyl analog and provide a molecular docking rationale for the progressive decrease in signaling potency with the growing length of the α-substituent. Ariadne versus DOM exhibits no apparent change in the relative preference between Gq/11 activation and ß-arrestin2 recruitment; instead, there is a small but consistent drop in efficacy in these signaling channels. Ariadne acts as a 5-HT2A agonist in vivo in mice and shows markedly attenuated head twitch response (HTR) in comparison to its hallucinogenic analogs, consistent with previous studies in rabbits, cats, and dogs. Hence, we propose the lower 5-HT2A receptor signaling efficacy of this compound class as an explanatory model for the lack of hallucinogenic effects of Ariadne in humans and the dramatically attenuated hallucinosis-like effects in animals (5-HT2A signaling efficacy hypothesis). In terms of reverse translation of the noted clinical therapeutic effects, we used an auxilin knockout model of Parkinson's disease where Ariadne rescued severe motor deficits in this mouse line, on par with the effects of l-DOPA, a notable finding considering Ariadne's lack of activity at dopamine receptors and transporters. Ariadne emerges as a prototype of a new drug class, non-hallucinogenic 5-HT2A agonists, with considerable therapeutic potential across psychiatric and neurological indications.


Subject(s)
Hallucinogens , Parkinson Disease , Humans , Mice , Animals , Rabbits , Dogs , Aged , Serotonin , Serotonin 5-HT2 Receptor Agonists/pharmacology , Molecular Docking Simulation , Hallucinogens/pharmacology , Hallucinogens/chemistry , Serotonin Receptor Agonists/pharmacology , Receptor, Serotonin, 5-HT2A
7.
J Vis Exp ; (187)2022 09 14.
Article in English | MEDLINE | ID: mdl-36190269

ABSTRACT

Synaptic terminals are the primary sites of neuronal communication. Synaptic dysfunction is a hallmark of many neuropsychiatric and neurological disorders. The characterization of synaptic sub-compartments by biochemical isolation is, therefore, a powerful method to elucidate the molecular bases of synaptic processes, both in health and disease. This protocol describes the isolation of synaptic terminals and synaptic sub-compartments from mouse brains by subcellular fractionation. First, sealed synaptic terminal structures, known as synaptosomes, are isolated following brain tissue homogenization. Synaptosomes are neuronal pre- and post-synaptic compartments with pinched-off and sealed membranes. These structures retain a metabolically active state and are valuable for studying synaptic structure and function. The synaptosomes are then subjected to hypotonic lysis and ultracentrifugation to obtain synaptic sub-compartments enriched for synaptic vesicles, synaptic cytosol, and synaptic plasma membrane. Fraction purity is confirmed by electron microscopy and biochemical enrichment analysis for proteins specific to sub-synaptic compartments. The presented method is a straightforward and valuable tool for studying the structural and functional characteristics of the synapse and the molecular etiology of various brain disorders.


Subject(s)
Synaptic Membranes , Synaptosomes , Animals , Brain/metabolism , Cell Fractionation/methods , Mice , Subcellular Fractions , Synaptic Vesicles/metabolism , Synaptosomes/metabolism
8.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35514182

ABSTRACT

The development of single-cell RNA-sequencing (scRNA-seq) technologies has offered insights into complex biological systems at the single-cell resolution. In particular, these techniques facilitate the identifications of genes showing cell-type-specific differential expressions (DE). In this paper, we introduce MARBLES, a novel statistical model for cross-condition DE gene detection from scRNA-seq data. MARBLES employs a Markov Random Field model to borrow information across similar cell types and utilizes cell-type-specific pseudobulk count to account for sample-level variability. Our simulation results showed that MARBLES is more powerful than existing methods to detect DE genes with an appropriate control of false positive rate. Applications of MARBLES to real data identified novel disease-related DE genes and biological pathways from both a single-cell lipopolysaccharide mouse dataset with 24 381 cells and 11 076 genes and a Parkinson's disease human data set with 76 212 cells and 15 891 genes. Overall, MARBLES is a powerful tool to identify cell-type-specific DE genes across conditions from scRNA-seq data.


Subject(s)
Lipopolysaccharides , Single-Cell Analysis , Animals , Gene Expression Profiling/methods , Humans , Mice , RNA/genetics , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
9.
PLoS Biol ; 20(3): e3001590, 2022 03.
Article in English | MEDLINE | ID: mdl-35358180

ABSTRACT

Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein-associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Animals , Disulfides/metabolism , Lipoylation , Mice , Mice, Knockout , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Synapses/metabolism
10.
Proc Natl Acad Sci U S A ; 116(48): 24310-24316, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31685606

ABSTRACT

Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein and its deposition into pathologic Lewy bodies. While extensive research has been carried out on mediators of α-synuclein aggregation, molecular facilitators of α-synuclein disaggregation are still generally unknown. We investigated the role of molecular chaperones in both preventing and disaggregating α-synuclein oligomers and fibrils, with a focus on the mammalian disaggregase complex. Here, we show that overexpression of the chaperone Hsp110 is sufficient to reduce α-synuclein aggregation in a mammalian cell culture model. Additionally, we demonstrate that Hsp110 effectively mitigates α-synuclein pathology in vivo through the characterization of transgenic Hsp110 and double-transgenic α-synuclein/Hsp110 mouse models. Unbiased analysis of the synaptic proteome of these mice revealed that overexpression of Hsp110 can override the protein changes driven by the α-synuclein transgene. Furthermore, overexpression of Hsp110 is sufficient to prevent endogenous α-synuclein templating and spread following injection of aggregated α-synuclein seeds into brain, supporting a role for Hsp110 in the prevention and/or disaggregation of α-synuclein pathology.


Subject(s)
Brain/pathology , HSP110 Heat-Shock Proteins/metabolism , Parkinson Disease/etiology , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HSP110 Heat-Shock Proteins/genetics , Humans , Mice, Transgenic , Parkinson Disease/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Synucleinopathies/genetics , Synucleinopathies/mortality , Synucleinopathies/pathology , alpha-Synuclein/genetics
11.
Elife ; 82019 10 30.
Article in English | MEDLINE | ID: mdl-31663851

ABSTRACT

The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.


Subject(s)
Drosophila melanogaster/genetics , Gain of Function Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Neurons/metabolism , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila melanogaster/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron, Transmission , Neuronal Ceroid-Lipofuscinoses/metabolism , Neurons/ultrastructure , Synaptic Vesicles/metabolism , Ubiquitinated Proteins/genetics , Ubiquitinated Proteins/metabolism
12.
J Neurochem ; 150(5): 487-506, 2019 09.
Article in English | MEDLINE | ID: mdl-31287913

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".


Subject(s)
Endocytosis/physiology , Endosomes/physiology , Lysosomes/physiology , Nerve Tissue Proteins/physiology , Parkinson Disease/physiopathology , Autophagy , Axons/metabolism , Corpus Striatum/physiopathology , Forecasting , Genetic Association Studies , Humans , Membrane Fusion/physiology , Mitophagy , Mutation , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Risk Factors , Substantia Nigra/physiopathology , Transport Vesicles/chemistry , Transport Vesicles/physiology
13.
J Neurosci ; 37(40): 9617-9631, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28847804

ABSTRACT

Glucocerebrosidase 1 (GBA) mutations responsible for Gaucher disease (GD) are the most common genetic risk factor for Parkinson's disease (PD). Although the genetic link between GD and PD is well established, the underlying molecular mechanism(s) are not well understood. We propose that glucosylsphingosine, a sphingolipid accumulating in GD, mediates PD pathology in GBA-associated PD. We show that, whereas GD-related sphingolipids (glucosylceramide, glucosylsphingosine, sphingosine, sphingosine-1-phosphate) promote α-synuclein aggregation in vitro, glucosylsphingosine triggers the formation of oligomeric α-synuclein species capable of templating in human cells and neurons. Using newly generated GD/PD mouse lines of either sex [Gba mutant (N370S, L444P, KO) crossed to α-synuclein transgenics], we show that Gba mutations predispose to PD through a loss-of-function mechanism. We further demonstrate that glucosylsphingosine specifically accumulates in young GD/PD mouse brain. With age, brains exhibit glucosylceramide accumulations colocalized with α-synuclein pathology. These findings indicate that glucosylsphingosine promotes pathological aggregation of α-synuclein, increasing PD risk in GD patients and carriers.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a prevalent neurodegenerative disorder in the aging population. Glucocerebrosidase 1 mutations, which cause Gaucher disease, are the most common genetic risk factor for PD, underscoring the importance of delineating the mechanisms underlying mutant GBA-associated PD. We show that lipids accumulating in Gaucher disease, especially glucosylsphingosine, play a key role in PD pathology in the brain. These data indicate that ASAH1 (acid ceramidase 1) and GBA2 (glucocerebrosidase 2) enzymes that mediate glucosylsphingosine production and metabolism are attractive therapeutic targets for treating mutant GBA-associated PD.


Subject(s)
Glucosylceramidase/biosynthesis , Mutation/physiology , Parkinson Disease/metabolism , Psychosine/analogs & derivatives , alpha-Synuclein/biosynthesis , Animals , Brain/metabolism , Brain/pathology , Female , Glucosylceramidase/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/pathology , Psychosine/biosynthesis , Psychosine/genetics , alpha-Synuclein/genetics
14.
Front Neurosci ; 11: 248, 2017.
Article in English | MEDLINE | ID: mdl-28579939

ABSTRACT

Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs): Cysteine String Protein alpha (CSPα; DNAJC5), auxilin (DNAJC6), and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13). These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70), enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110), which interacts with Hsc70, DNAJAs, and DNAJBs to constitute a disaggregase. Hsp110-related disaggregase activity is present at the synapse and is known to protect against aggregation of proteins such as α-synuclein. Congruent with their importance in the nervous system, mutations of these co-chaperones lead to familial neurodegenerative disease. CSPα mutations cause adult neuronal ceroid lipofuscinosis, while auxilin mutations result in early-onset Parkinson's disease, demonstrating their significance in preservation of the nervous system.

15.
Cell Rep ; 18(1): 161-173, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28052246

ABSTRACT

Synucleins (α, ß, γ-synuclein) are a family of abundant presynaptic proteins. α-Synuclein is causally linked to the pathogenesis of Parkinson's disease (PD). In an effort to define their physiological and pathological function or functions, we investigated the effects of deleting synucleins and overexpressing α-synuclein PD mutations, in mice, on synapse architecture using electron microscopy (EM) and cryoelectron tomography (cryo-ET). We show that synucleins are regulators of presynapse size and synaptic vesicle (SV) pool organization. Using cryo-ET, we observed that deletion of synucleins increases SV tethering to the active zone but decreases the inter-linking of SVs by short connectors. These ultrastructural changes were correlated with discrete protein phosphorylation changes in αßγ-synuclein-/- neurons. We also determined that α-synuclein PD mutants (PARK1/hA30P and PARK4/hα-syn) primarily affected presynaptic cytomatrix proximal to the active zone, congruent with previous findings that these PD mutations decrease neurotransmission. Collectively, our results suggest that synucleins are important orchestrators of presynaptic terminal topography.


Subject(s)
Synucleins/metabolism , Animals , Humans , Mice , Mutation/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure
16.
Acta Neuropathol ; 131(4): 621-37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26659577

ABSTRACT

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.


Subject(s)
Brain/metabolism , HSP40 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , Mutation/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Thiolester Hydrolases/metabolism , Animals , Brain/pathology , Cells, Cultured , Cerebral Cortex/cytology , Female , HSP40 Heat-Shock Proteins/deficiency , Humans , Lipoylation/genetics , Lipoylation/physiology , Male , Membrane Proteins/deficiency , Mice , Mice, Knockout , Models, Biological , Neurons/drug effects , Neurons/metabolism , Protein Interaction Maps , Proteomics , Subcellular Fractions/metabolism , Subcellular Fractions/pathology , Transfection
17.
J Neurosci ; 34(28): 9364-76, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25009269

ABSTRACT

Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with ß- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, ß-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD.


Subject(s)
Endocytosis/physiology , Hippocampus/physiology , Neurons/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/physiology , Synucleins/metabolism , Animals , Female , Hippocampus/ultrastructure , Kinetics , Male , Mice , Mice, Inbred C57BL , Neurons/ultrastructure
18.
Biochim Biophys Acta ; 1842(11): 2136-46, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25064588

ABSTRACT

Cysteine String Protein alpha (CSPα) is a palmitoylated, synaptic vesicle co-chaperone that is essential for neuroprotection. Two mutations in CSPα - L115R and L116Δ - cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly-inherited neurodegenerative disease. To elucidate the pathogenesis of ANCL, the intrinsic biochemical properties of human wildtype (WT) and disease mutant CSPα were examined. Mutant proteins purified from Escherichia coli exhibited high potency to oligomerize in a concentration, temperature, and time dependent manner, with L115R possessing the greatest potency. When freshly purified, ANCL mutant proteins displayed normal co-chaperone activity and substrate recognition similar to WT. However, co-chaperone activity was impaired for both CSPα mutants upon oligomerization. When WT and mutant CSPα were mixed together they co-oligomerized leading to an overall decrease of co-chaperone activity. The oligomerization properties of ANCL mutants were faithfully replicated in HEK 293T cells. Interestingly, the oligomers were covalently tagged by ubiquitination instead of palmitoylation. Taken together, ANCL mutations result in both a gain and partial loss-of-function.

19.
Proc Natl Acad Sci U S A ; 110(9): 3489-94, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23359680

ABSTRACT

Ubiquitin C-terminal hydrolase-L1 (UCHL1), a neuron-specific de-ubiquitinating enzyme, is one of the most abundant proteins in the brain. We describe three siblings from a consanguineous union with a previously unreported early-onset progressive neurodegenerative syndrome featuring childhood onset blindness, cerebellar ataxia, nystagmus, dorsal column dysfuction, and spasticity with upper motor neuron dysfunction. Through homozygosity mapping of the affected individuals followed by whole-exome sequencing of the index case, we identified a previously undescribed homozygous missense mutation within the ubiquitin binding domain of UCHL1 (UCHL1(GLU7ALA)), shared by all affected subjects. As demonstrated by isothermal titration calorimetry, purified UCHL1(GLU7ALA), compared with WT, exhibited at least sevenfold reduced affinity for ubiquitin. In vitro, the mutation led to a near complete loss of UCHL1 hydrolase activity. The GLU7ALA variant is predicted to interfere with the substrate binding by restricting the proper positioning of the substrate for tunneling underneath the cross-over loop spanning the catalytic cleft of UCHL1. This interference with substrate binding, combined with near complete loss of hydrolase activity, resulted in a >100-fold reduction in the efficiency of UCHL1(GLU7ALA) relative to WT. These findings demonstrate a broad requirement of UCHL1 in the maintenance of the nervous system.


Subject(s)
Genes, Recessive/genetics , Nerve Degeneration/enzymology , Nerve Degeneration/pathology , Neurons/enzymology , Neurons/pathology , Ubiquitin Thiolesterase/genetics , Adult , Age of Onset , Amino Acid Sequence , Base Sequence , Child, Preschool , Exome/genetics , Female , Homozygote , Humans , Hydrolysis , Male , Models, Molecular , Molecular Sequence Data , Mutation, Missense/genetics , Pedigree , Protein Binding , Sequence Analysis, DNA , Substrate Specificity , Syndrome , Thermodynamics , Ubiquitin/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism
20.
J Biol Chem ; 288(3): 1829-40, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23184946

ABSTRACT

Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αßγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Cell Membrane/chemistry , Liposomes/chemistry , Parkinson Disease/metabolism , alpha-Synuclein/chemistry , beta-Synuclein/chemistry , gamma-Synuclein/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Brain Chemistry , Cell Membrane/metabolism , Cell Shape , Gene Expression Regulation , Humans , Liposomes/metabolism , Mice , Mice, Knockout , Parkinson Disease/genetics , Protein Folding , Protein Multimerization , Protein Structure, Secondary , Proteomics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synaptic Vesicles/chemistry , alpha-Synuclein/deficiency , alpha-Synuclein/genetics , beta-Synuclein/deficiency , beta-Synuclein/genetics , gamma-Synuclein/deficiency , gamma-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...