Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Plant Biol ; 24(1): 197, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500040

ABSTRACT

BACKGROUND: Plant microbiome confers versatile functional roles to enhance survival fitness as well as productivity. In the present study two pearl millet panicle microbiome member species Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36 found to have beneficial traits including plant growth promotion and broad-spectrum antifungal activity towards taxonomically diverse plant pathogens. Understanding the genomes will assist in devising a bioformulation for crop protection while exploiting their beneficial functional roles. RESULTS: Two potential firmicute species were isolated from pearl millet panicles. Morphological, biochemical, and molecular characterization revealed their identities as Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36. The seed priming assays revealed the ability of both species to enhance plant growth promotion and seedling vigour index. Invitro assays with PBs 12 and PBl 36 showed the antibiosis effect against taxonomically diverse plant pathogens (Magnaporthe grisea; Sclerotium rolfsii; Fusarium solani; Alternaria alternata; Ganoderma sp.) of crops and multipurpose tree species. The whole genome sequence analysis was performed to unveil the genetic potential of these bacteria for plant protection. The complete genomes of PBs 12 and PBl 36 consist of a single circular chromosome with a size of 4.02 and 4.33 Mb and 4,171 and 4,606 genes, with a G + C content of 43.68 and 45.83%, respectively. Comparative Average Nucleotide Identity (ANI) analysis revealed a close similarity of PBs 12 and PBl 36 with other beneficial strains of B. subtilis and B. paralicheniformis and found distant from B. altitudinis, B. amyloliquefaciens, and B. thuringiensis. Functional annotation revealed a majority of pathway classes of PBs 12 (30) and PBl 36 (29) involved in the biosynthesis of secondary metabolites, polyketides, and non-ribosomal peptides, followed by xenobiotic biodegradation and metabolism (21). Furthermore, 14 genomic regions of PBs 12 and 15 of PBl 36 associated with the synthesis of RiPP (Ribosomally synthesized and post-translationally modified peptides), terpenes, cyclic dipeptides (CDPs), type III polyketide synthases (T3PKSs), sactipeptides, lanthipeptides, siderophores, NRPS (Non-Ribosomal Peptide Synthetase), NRP-metallophone, etc. It was discovered that these areas contain between 25,458 and 33,000 secondary metabolite-coding MiBiG clusters which code for a wide range of products, such as antibiotics. The PCR-based screening for the presence of antimicrobial peptide (cyclic lipopeptide) genes in PBs 12 and 36 confirmed their broad-spectrum antifungal potential with the presence of spoVG, bacA, and srfAA AMP genes, which encode antimicrobial compounds such as subtilin, bacylisin, and surfactin. CONCLUSION: The combined in vitro studies and genome analysis highlighted the antifungal potential of pearl millet panicle-associated Bacillus subtilis PBs12 and Bacillus paralicheniformis PBl36. The genetic ability to synthesize several antimicrobial compounds indicated the industrial value of PBs 12 and PBl 36, which shed light on further studies to establish their action as a biostimulant for crop protection.


Subject(s)
Anti-Infective Agents , Bacillus , Pennisetum , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Pennisetum/genetics , Pennisetum/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Anti-Infective Agents/metabolism , Genomics , Plants/metabolism , Peptides/metabolism
3.
Front Microbiol ; 12: 769891, 2021.
Article in English | MEDLINE | ID: mdl-35250900

ABSTRACT

The present study focused on phytofabrication of selenium nanoparticles (SeNPs) from Carica papaya extract and exploration of their multi-biofunctional features. Total phenolics and flavonoids of C. papaya fruit extract were determined as 23.30 ± 1.88 mg gallic acid equivalents and 19.21 ± 0.44 mg quercetin equivalents per gram, respectively, which suggested that C. papaya fruit extract could be a competitive reducing and stabilizing agent during phytofabrication of nanoparticles. UV-Vis and FTIR spectroscopy showed the formation of SeNPs from sodium selenite, which could be related to the reducing and stabilizing activities of C. papaya fruit extract. The SeNPs were found to be stable with a Zeta potential of -32 mV. The average hydrodynamic size of SeNPs was found as 159 nm by dynamic light scattering. The SeNPs showed a broader XRD pattern with no sharp Bragg's peaks and found to be amorphous. SEM showed that SeNPs were spherical in shape and EDX pattern showed that SeNPs were made up of Se (71.81%), C (11.41%), and O (14.88%). The HR-TEM picture showed that SeNPs were spherical in morphology and have a size range of 101-137 nm. The SeNPs exhibited potent antioxidant activity and their EC50 values (effective concentration required to inhibit 50% of radicals) were 45.65 ± 2.01 and 43.06 ± 3.80 µg/ml in DPPH and ABTS assays, respectively. The antimicrobial action of SeNPs was found as a broad spectrum and suppressed microbial pathogens in ascending order: fungi > Gram-positive bacteria > Gram-negative bacteria. The SeNPs have been demonstrated to reduce the growth and ochratoxin A (OTA) of mycotoxigenic Aspergillus ochraceus and Penicillium verrucosum at 40 µg/ml in broth culture, which is noteworthy. The SeNPs reduced cancer cell proliferation (RAW 264.7, Caco-2, MCF-7, and IMR-32) more preferentially than normal cells (Vero), found to be highly biocompatible. Lower doses of SeNPs (up to 50 µg/ml) were shown to be less toxic and did not cause death in Danio rerio (zebrafish) embryos, implying that lower doses of SeNPs could be beneficial for biological purposes. The present study concluded that phytofabricated SeNPs have multiple biofunctional properties, including antioxidant, antimicrobial, antimycotoxin, and anticancer activities, as well as high biocompatibility.

4.
Front Pharmacol ; 8: 760, 2017.
Article in English | MEDLINE | ID: mdl-29114225

ABSTRACT

In the present study, activated carbon (AC) was derived from seed shells of Jatropha curcas and applied to decontaminate the zearalenone (ZEA) mycotoxin. The AC of J. curcas (ACJC) was prepared by ZnCl2 chemical activation method and its crystalline structure was determined by X-ray diffraction analysis. The crystalline graphitic nature of ACJC was confirmed from the Raman spectroscopy. Scanning electron microscope showed the porous surface morphology of the ACJC surface with high pore density and presence of elemental carbon was identified from the energy dispersive X-ray analysis. From Brunauer-Emmett-Teller (BET) analysis, SBET, micropore area, and average pore diameter of ACJC were calculated as 822.78 (m2/g), 255.36 (m2/g), and 8.5980 (Å), respectively. The adsorption of ZEA by ACJC was accomplished with varying contact time, concentration of ZEA and ACJC, and pH of media. The ACJC has adsorbed the ZEA over a short period of time and adsorption of ZEA was dependent on the dose of ACJC. The effect of different pH on adsorption of ZEA by ACJC was not much effective. Desorption studies confirmed that adsorption of ZEA by ACJC was stable. The adsorption isotherm of ZEA by ACJC was well fitted with Langmuir model rather than Freundlich and concluded the homogeneous process of sorption. The maximum adsorption of ZEA by ACJC was detected as 23.14 µg/mg. Finally, adsorption property of ACJC was utilized to establish ACJC as an antidote against ZEA-induced toxicity under in vitro in neuro-2a cells. The percentage of live cells was high in cells treated together with a combination of ZEA and ACJC compared to ZEA treated cells. In a similar way, ΔΨM was not dropped in cells exposed to combination of ACJC and ZEA compared to ZEA treated cells. Furthermore, cells treated with a combination of ZEA and ACJC exhibited lower level of intracellular reactive oxygen species and caspase-3 compared to ZEA treated cells. These in vitro studies concluded that ACJC has successfully protected the cells from ZEA-induced toxicity by lowering the availability of ZEA in media as a result of adsorption of ZEA. The study concluded that ACJC was a potent decontaminating agent for ZEA and could be used as an antidote against ZEA-induced toxicity.

5.
Int J Biol Macromol ; 86: 917-28, 2016 May.
Article in English | MEDLINE | ID: mdl-26893053

ABSTRACT

Hyaluronic acid (HA), is a glycosaminoglycan comprised of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. HA is synthesized by hyaluronan synthases and reaches sizes in excess of 2MDa. It plays numerous roles in normal tissues but also has been implicated in inflammatory processes, multiple drug resistance, angiogenesis, tumorigenesis, water homeostasis, and altered viscoelasticity of extracellular matrix. The physicochemical properties of HA including its solubility and the availability of reactive functional groups facilitate chemical modifications on HA, which makes it a biocompatible material for use in tissue regeneration. HA-based biomaterials and bioscaffolds do not trigger allergies or inflammation and are hydrophilic which make them popular as injectable dermal and soft tissue fillers. They are manufactured in different forms including hydrogels, tubes, sheets and meshes. Here, we review the pathophysiological and pharmacological properties and the clinical uses of native and modified HA. The review highlights the therapeutic applications of HA-based bioscaffolds in organ-specific tissue engineering and regenerative medicine.


Subject(s)
Biocompatible Materials , Hyaluronic Acid , Regenerative Medicine/methods , Tissue Engineering/methods , Tissue Scaffolds , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...