Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol ; 14(8): e70152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39130100

ABSTRACT

Carbon (C), nitrogen (N), and phosphorus (P) are essential nutrients that promote plant growth and development and maintain the stability of ecosystem structure and function. Analyzing the C, N, and P characteristics of plant leaves aids in understanding the plant's nutrient status and nutrient limitation. Seasonal water-level fluctuations in riparian zones lead to various ecological problems, such as reduced biodiversity and decreased ecosystem stability. Therefore, comprehending the stoichiometric characteristics of riparian zone plants and their nutrient response to plant traits is important for a deeper insight into riparian zone forest ecosystems. This study analyzed the C, N, and P contents of the leaves of 44 woody plants in the riparian zone of the Dahuofang Reservoir to investigate the stoichiometric characteristics of C, N, and P of trees in the region. The results showed that the average C content of the leaves in woody plants was 446.9 g kg-1; the average N content was 28.42 g kg-1; and the average P content was 2.26 g kg-1. Compared to global and regional scales, woody plants in the riparian zone of the Dahuofang Reservoir exhibited higher N and P contents but lower N:P ratios. Compared to other riparian zones, woody plant leaves in the riparian zone of Dahuofang Reservoir had relatively high N content and N:P ratios. Variations in plant stoichiometric characteristics across different life forms were minimal, with only tree leaf P content significantly lower than its in shrubs. There was no significant correlation between leaf C, N, and P in woody plants, while specific leaf area showed a negative correlation with leaf C content. Trees in the riparian zone have high leaf N and P content and are primarily N-limited during the growing season. This study reveals the stoichiometric characteristics of leaves of woody plants in the riparian zone, which can contribute to an in-depth understanding of leaf stoichiometric patterns and the factors influencing them among plant life types in the riparian zone.

2.
Front Plant Sci ; 15: 1407867, 2024.
Article in English | MEDLINE | ID: mdl-39070907

ABSTRACT

Young shoots of Aralia elata and young leaves of Eleutherococcus senticosus are two major non-timber forest products in northeastern China. However, human activities and climate change have resulted in serious threats to the habitats of two trees, which greatly limits resource conservation and exploitation of economic forest trees. We used the MaxEnt model to predict the suitable habitats of the two economic trees and analyzed the dominant factors affecting their distribution. The results showed that the suitable habitat areas of A. elata and E. senticosus in the current period were 159950 km2 and 123449 km2, respectively, and the suitable habitats of both economic forest trees were located in the eastern part of the northeast region. Climate factors (Annual precipitation, Precipitation Seasonality) and land use factors are important variables influencing changes in suitable habitat for both trees. With the change of climate and land use in the future, the overall trend of suitable habitat for both economic forest trees shows a northward and then a southward migration. These results may provide assistance in developing strategies for resource conservation and sustainable use of A. elata and E. senticosus, and we suggest that stable and suitable habitats should be selected as areas for in situ conservation and breeding of the two economic forest trees.

3.
Plants (Basel) ; 13(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38498525

ABSTRACT

Aquatic plants play a crucial role in the sustainable management of eutrophic water bodies, serving as a valuable tool for water purification. However, the effectiveness of using aquatic plants for improving water quality is influenced by landscape considerations. In practical applications, challenges arise concerning low purification efficiency and compromised aesthetic appeal when utilizing plants for water purification. To address these issues, this study aimed to examine the impact of aquatic plants on the purification of simulated landscape water bodies, specifically focusing on the effectiveness of the mosaic system of submerged-emerged plants in remediating eutrophic water bodies. Our findings indicated that individual aquatic plants exhibited limited efficacy in pollutant (total nitrogen, total phosphorus, ammonia nitrogen, and chemical oxygen demand) removal. However, when combined in appropriate proportions, submerged plants could enhance species growth and improve the purification efficiency of polluted water bodies. Notably, the mosaic system of submerged-emerged plants neither significantly promoted nor inhibited the growth of each other, but it effectively removed pollutants from the simulated water bodies and inhibited turbidity increase. The comprehensive evaluation ranked the purification capacity as Canna indica-submerged plants combination (C + S) > Thalia dealbata-submerged plants combination (T + S) > Iris pseudacorus-submerged plants combination (I + S) > Lythrum salicaria-submerged plants combination (L + S). Both C + S and T + S configurations effectively mitigated the rise of water turbidity and offered appealing landscape benefits, making them viable options for practical applications in urban landscape water bodies. Our study highlights that a submerged-emerged mosaic combination is a means of water purification that combines landscape aesthetics and purification efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL