Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38675304

ABSTRACT

The increasing energy demands of the global community can be met with solar energy. Solution-processed organic solar cells have seen great progress in power conversion efficiencies (PCEs). Semitransparent organic solar cells (ST-OSCs) have made enormous progress in recent years and have been considered one of the most promising solar cell technologies for applications in building-integrated windows, agricultural greenhouses, and wearable energy resources. Therefore, through the synergistic efforts of transparent electrodes, engineering in near-infrared photoabsorbent materials, and device engineering, high-performance ST-OSCs have developed, and PCE and average visible transmittance reach over 10% and 40%, respectively. In this review, we present the recent progress in photoabsorbent material engineering and strategies for enhancing the performance of ST-OSCs to help researchers gain a better understanding of structure-property-performance relationships. To conclude, new design concepts in material engineering and outlook are proposed to facilitate the further development of high-performance ST-OSCs.

2.
RSC Adv ; 11(38): 23631-23636, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-35479804

ABSTRACT

In nature, wetting by water droplets on superhydrophobic materials is governed by the Cassie-Baxter or Wenzel models. Moreover, sticky properties, derived from these types of wettings, are required for a wide range of applications involving superhydrophobic materials. As a facile new strategy, a method employing a gaseous fluorine precursor to fabricate core-shell particles, comprising perfectly shaped fluorine shells with adjustable adhesive strength, is described in this paper. Silica was used as the hydrophilic core, while polyvinylidene fluoride (PVDF) was used for the hydrophobic shell coating, forming a raspberry-like shape. In addition, controlling the amount of PVDF coated on the silica surface enabled the water droplets to come into contact with both the PVDF of the shell and the silica of the core, thereby controlling both the superhydrophobicity and the adhesive strength. Thus, the synthesized particles formed a structured coating with controllable stickiness and contact angles of 131-165°. Furthermore, on surfaces with high adhesivity, the water droplets remained stable at tilt angles of 90° and 180° even under a strong centrifugal force, whereas on surfaces with low adhesivity, the water droplets slid off when the substrate was tilted at 4°.

3.
Langmuir ; 20(26): 11297-300, 2004 Dec 21.
Article in English | MEDLINE | ID: mdl-15595747

ABSTRACT

This Letter reports a novel approach to the fabrication of a biomimicking surface by modification of an end-functionalizable smooth polymer cushion constructed via chemoselective ligation with a phospholipid-like molecule containing oxyamine groups. The mobility of a phospholipid bilayer formed by vesicle fusion on the phospholipid-like molecule terminated polymer film was characterized by fluorescence recovery after bleaching. Platelet adhesion, as one measure of biocompatibility of the film was also studied and compared to other surfaces such as polyethylene or poly(dimethylsiloxane). The results show that the end-functionalized smooth polymer cushion has potential as a biocompatible platform to reconstitute membrane proteins.


Subject(s)
Lipids/chemistry , Polymers/chemistry , Fluorescence Recovery After Photobleaching , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Molecular Structure , Platelet Adhesiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...