Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Cell Rep ; 43(6): 114359, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870015

ABSTRACT

There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly affects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing macroscale brain state dynamics.


Subject(s)
Magnetic Resonance Imaging , Animals , Basal Nucleus of Meynert/physiology , Basal Nucleus of Meynert/metabolism , Acetylcholine/metabolism , Macaca mulatta , Male , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Cerebral Cortex/physiology , Cerebral Cortex/metabolism , Neurons/metabolism , Neurons/physiology , Models, Neurological
2.
Brain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874456

ABSTRACT

Successful surgical treatment of drug-resistant epilepsy traditionally relies on the identification of seizure onset zones (SOZs). Connectome-based analyses of electrographic data from stereo electroencephalography (SEEG) may empower improved detection of SOZs. Specifically, connectome-based analyses based on the Interictal Suppression Hypothesis (ISH) posit that when the patient is not having a seizure, SOZs are inhibited by non-SOZs through high inward connectivity and low outward connectivity. However, it is not clear whether there are other motifs that can better identify potential SOZs. Thus, we sought to use unsupervised machine learning to identify network motifs that elucidate SOZs and investigate if there is another motif that outperforms the ISH. Resting-state SEEG data from 81 patients with drug-resistant epilepsy undergoing a pre-surgical evaluation at Vanderbilt University Medical Center were collected. Directed connectivity matrices were computed using the alpha band (8-12Hz). Principal component analysis (PCA) was performed on each patient's connectivity matrix. Each patient's components were analyzed qualitatively to identify common patterns across patients. A quantitative definition was then used to identify the component that most closely matched the observed pattern in each patient. A motif characteristic of the Interictal Suppression Hypothesis (high-inward and low-outward connectivity) was present in all individuals and found to be the most robust motif for identification of SOZs in 64/81 (79%) patients. This principal component demonstrated significant differences in SOZs compared to non-SOZs. While other motifs for identifying SOZs were present in other patients, they differed for each patient, suggesting that seizure networks are patient specific, but the ISH is present in nearly all networks. We discovered that a potentially suppressive motif based on the Interictal Suppression Hypothesis was present in all patients, and it was the most robust motif for SOZs in 79% of patients. Each patient had additional motifs that further characterized SOZs, but these motifs were not common across all patients. This work has the potential to augment clinical identification of SOZs to improve epilepsy treatment.

3.
Brain Cogn ; 175: 106134, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266398

ABSTRACT

BACKGROUND: Despite accumulation of a substantial body of literature supporting the role of exercise on frontal lobe functioning, relatively less is understood of the interconnectivity of ventromedial prefrontal cortical (vmPFC) regions that underpin cardio-autonomic regulation predict cardiac chronotropic competence (CC) in response to sub-maximal exercise. METHODS: Eligibility of 161 adults (mean age = 48.6, SD = 18.3, 68% female) was based upon completion of resting state brain scan and sub-maximal bike test. Sliding window analysis of the resting state signal was conducted over 45-s windows, with 50% overlap, to assess how changes in photoplethysmography-derived HRV relate to vmPFC functional connectivity with the whole brain. CC was assessed based upon heart rate (HR) changes during submaximal exercise (HR change /HRmax (206-0.88 × age) - HRrest). RESULTS: During states of elevated HRV the vmPFC showed greater rsFC with an 83-voxel region of the hypothalamus (p < 0.001, uncorrected). Beta estimates of vmPFC connectivity extracted from a 6-mm sphere around this region emerged as the strongest predictor of CC (b = 0.283, p <.001) than age, BMI, and resting HRV F(8,144) = 6.30, p <.001. CONCLUSION: Extensive glutamatergic innervation of the hypothalamus by the vmPFC allows for top-down control of the hypothalamus and its various autonomic efferents which facilitate chronotropic response during sub-maximal exercise.


Subject(s)
Autonomic Nervous System , Brain , Adult , Humans , Female , Middle Aged , Male , Autonomic Nervous System/physiology , Prefrontal Cortex/physiology , Frontal Lobe , Heart Rate/physiology , Magnetic Resonance Imaging
4.
Epilepsia ; 65(3): 675-686, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38240699

ABSTRACT

OBJECTIVE: To understand the potential behavioral and cognitive effects of mesial temporal resection for temporal lobe epilepsy (TLE) a method is required to characterize network-wide functional alterations caused by a discrete structural disconnection. The objective of this study was to investigate network-wide alterations in brain dynamics of patients with TLE before and after surgical resection of the seizure focus using average regional controllability (ARC), a measure of the ability of a node to influence network dynamics. METHODS: Diffusion-weighted imaging (DWI) data were acquired in 27 patients with drug-resistant unilateral mesial TLE who underwent selective amygdalohippocampectomy. Imaging data were acquired before and after surgery and a presurgical and postsurgical structural connectome was generated from whole-brain tractography. Edge-wise strength, node strength, and node ARC were compared before and after surgery. Direct and indirect edge-wise strength changes were identified using patient-specific simulated resections. Direct edges were defined as primary edges disconnected by the resection zone itself. Indirect edges were secondary measured edge strength changes. Changes in node strength and ARC were then related to both direct and indirect edge changes. RESULTS: We found nodes with significant postsurgical changes in both node strength and ARC surrounding the resection zone (paired t tests, p < .05, Bonferroni corrected). ARC identified additional postsurgical changes in nodes outside of the resection zone within the ipsilateral occipital lobe, which were associated with indirect edge-wise strength changes of the postsurgical network (Fisher's exact test, p < .001). These indirect edge-wise changes were facilitated through the "hub" nodes including the thalamus, putamen, insula, and precuneus. SIGNIFICANCE: Discrete network disconnection from TLE resection results in widespread structural and functional changes not predicted by disconnection alone. These can be well characterized by dynamic controllability measures such as ARC and may be useful for investigating changes in brain function that may contribute to seizure recurrence and behavioral or cognitive changes after surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Magnetic Resonance Imaging/methods , Treatment Outcome , Brain , Seizures , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery
5.
ArXiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045477

ABSTRACT

Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional magnetic resonance imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain has been challenging due to the expansive number of potential preprocessing pipelines and the large parameter search space for graph-based dataset construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets, and demonstrated its utility for predicting multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets that encompass static and dynamic brain connectivity, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on both static and dynamic graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven neuroimaging analysis, we offer a comprehensive open-source Python package that includes the benchmark datasets, baseline implementations, model training, and standard evaluation.

6.
Front Neurosci ; 17: 1209398, 2023.
Article in English | MEDLINE | ID: mdl-37928727

ABSTRACT

Enjoying music consistently engages key structures of the neural auditory and reward systems such as the right superior temporal gyrus (R STG) and ventral striatum (VS). Expectations seem to play a central role in this effect, as preferences reliably vary according to listeners' uncertainty about the musical future and surprise about the musical past. Accordingly, VS activity reflects the pleasure of musical surprise, and exhibits stronger correlations with R STG activity as pleasure grows. Yet the reward value of musical surprise - and thus the reason for these surprises engaging the reward system - remains an open question. Recent models of predictive neural processing and learning suggest that forming, testing, and updating hypotheses about one's environment may be intrinsically rewarding, and that the constantly evolving structure of musical patterns could provide ample opportunity for this procedure. Consistent with these accounts, our group previously found that listeners tend to prefer melodic excerpts taken from real music when it either validates their uncertain melodic predictions (i.e., is high in uncertainty and low in surprise) or when it challenges their highly confident ones (i.e., is low in uncertainty and high in surprise). An independent research group (Cheung et al., 2019) replicated these results with musical chord sequences, and identified their fMRI correlates in the STG, amygdala, and hippocampus but not the VS, raising new questions about the neural mechanisms of musical pleasure that the present study seeks to address. Here, we assessed concurrent liking ratings and hemodynamic fMRI signals as 24 participants listened to 50 naturalistic, real-world musical excerpts that varied across wide spectra of computationally modeled uncertainty and surprise. As in previous studies, liking ratings exhibited an interaction between uncertainty and surprise, with the strongest preferences for high uncertainty/low surprise and low uncertainty/high surprise. FMRI results also replicated previous findings, with music liking effects in the R STG and VS. Furthermore, we identify interactions between uncertainty and surprise on the one hand, and liking and surprise on the other, in VS activity. Altogether, these results provide important support for the hypothesized role of the VS in deriving pleasure from learning about musical structure.

7.
medRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37745356

ABSTRACT

Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: 1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); 2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition x time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.

8.
Biosensors (Basel) ; 13(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37754113

ABSTRACT

We report a versatile platform based on an array of porous silicon (PSi) thin films that can identify analytes based on their physical and chemical properties without the use of specific capture agents. The ability of this system to reproducibly classify, quantify, and discriminate three proteins separately is demonstrated by probing the reflectance of PSi array elements with a unique combination of pore size and buffer pH, and by analyzing the optical signals using machine learning. Protein identification and discrimination are reported over a concentration range of two orders of magnitude. This work represents a significant first step towards a low-cost, simple, versatile, and robust sensor platform that is able to detect biomolecules without the added expense and limitations of using capture agents.

9.
Neurobiol Aging ; 132: 85-99, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769491

ABSTRACT

Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.


Subject(s)
Hippocampus , Locus Coeruleus , Heart Rate/physiology , Locus Coeruleus/physiology , Hippocampus/diagnostic imaging , Biofeedback, Psychology/physiology , Respiration
10.
Netw Neurosci ; 7(2): 557-577, 2023.
Article in English | MEDLINE | ID: mdl-37397892

ABSTRACT

The dynamic integration of sensory and bodily signals is central to adaptive behaviour. Although the anterior cingulate cortex (ACC) and the anterior insular cortex (AIC) play key roles in this process, their context-dependent dynamic interactions remain unclear. Here, we studied the spectral features and interplay of these two brain regions using high-fidelity intracranial-EEG recordings from five patients (ACC: 13 contacts, AIC: 14 contacts) acquired during movie viewing with validation analyses performed on an independent resting intracranial-EEG dataset. ACC and AIC both showed a power peak and positive functional connectivity in the gamma (30-35 Hz) frequency while this power peak was absent in the resting data. We then used a neurobiologically informed computational model investigating dynamic effective connectivity asking how it linked to the movie's perceptual (visual, audio) features and the viewer's heart rate variability (HRV). Exteroceptive features related to effective connectivity of ACC highlighting its crucial role in processing ongoing sensory information. AIC connectivity was related to HRV and audio emphasising its core role in dynamically linking sensory and bodily signals. Our findings provide new evidence for complementary, yet dissociable, roles of neural dynamics between the ACC and the AIC in supporting brain-body interactions during an emotional experience.

11.
Aging Brain ; 4: 100085, 2023.
Article in English | MEDLINE | ID: mdl-37485296

ABSTRACT

Blood pressure variability (BPV), independent of mean blood pressure levels, is associated with cerebrovascular disease burden on MRI and postmortem evaluation. However, less is known about relationships with markers of cerebrovascular dysfunction, such as diminished spontaneous brain activity as measured by the amplitude of low frequency fluctuations (ALFF), especially in brain regions with vascular and neuronal vulnerability in aging. We investigated the relationship between short-term BPV and concurrent regional ALFF from resting state fMRI in a sample of community-dwelling older adults (n = 44) and healthy younger adults (n = 49). In older adults, elevated systolic BPV was associated with lower ALFF in widespread medial temporal regions and the anterior cingulate cortex. Higher systolic BPV in younger adults was also related to lower ALFF in the medial temporal lobe, albeit in fewer subregions, and the amygdala. There were no significant associations between systolic BPV and ALFF across the right/left whole brain or in the insular cortex in either group. Findings suggest a possible regional vulnerability to cerebrovascular dysfunction and short-term fluctuations in blood pressure. BPV may be an understudied risk factor for cerebrovascular changes in aging.

12.
Sci Data ; 10(1): 503, 2023 07 29.
Article in English | MEDLINE | ID: mdl-37516756

ABSTRACT

We present data from the Heart Rate Variability and Emotion Regulation (HRV-ER) randomized clinical trial testing effects of HRV biofeedback. Younger (N = 121) and older (N = 72) participants completed baseline magnetic resonance imaging (MRI) including T1-weighted, resting and emotion regulation task functional MRI (fMRI), pulsed continuous arterial spin labeling (PCASL), and proton magnetic resonance spectroscopy (1H MRS). During fMRI scans, physiological measures (blood pressure, pulse, respiration, and end-tidal CO2) were continuously acquired. Participants were randomized to either increase heart rate oscillations or decrease heart rate oscillations during daily sessions. After 5 weeks of HRV biofeedback, they repeated the baseline measurements in addition to new measures (ultimatum game fMRI, training mimicking during blood oxygen level dependent (BOLD) and PCASL fMRI). Participants also wore a wristband sensor to estimate sleep time. Psychological assessment comprised three cognitive tests and ten questionnaires related to emotional well-being. A subset (N = 104) provided plasma samples pre- and post-intervention that were assayed for amyloid and tau. Data is publicly available via the OpenNeuro data sharing platform.


Subject(s)
Biofeedback, Psychology , Neuroimaging , Humans , Biological Assay , Blood Pressure , Heart Rate , Randomized Controlled Trials as Topic
13.
Magn Reson Imaging ; 103: 18-27, 2023 11.
Article in English | MEDLINE | ID: mdl-37400042

ABSTRACT

Functional magnetic resonance images (fMRI) acquired using echo planar sequences typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may cause geometric mismatch with structural images and affect subsequent quantification and localization of brain function. State-of-the art distortion correction methods (for example, using FSL's topup or AFNI's 3dQwarp algorithms) require the collection of additional scans - either field maps or images with reverse phase encoding directions (i.e., blip-up/blip-down acquisitions) - to estimate and correct distortions. However, not all imaging protocols acquire these additional data and thus cannot take advantage of these post-acquisition corrections. In this study, we aim to enable state-of-the art processing of historical or limited datasets that do not include specific sequences for distortion correction by using only the acquired functional data and a single commonly acquired structural image. To achieve this, we synthesize an undistorted image with contrast similar to the fMRI data and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach, named SynBOLD-DisCo (Synthetic BOLD contrast for Distortion Correction), and show that this distortion correction process yields fMRI data that are geometrically similar to non-distorted structural images, with distortion correction virtually equivalent to acquisitions that do contain both blip-up/blip-down images. Our method is available as a Singularity container, source code, and an executable trained model to facilitate evaluation and integration into existing fMRI preprocessing pipelines.


Subject(s)
Echo-Planar Imaging , Image Processing, Computer-Assisted , Echo-Planar Imaging/methods , Image Processing, Computer-Assisted/methods , Artifacts , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging
15.
Brain ; 146(9): 3913-3922, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37018067

ABSTRACT

Epilepsy surgery consists of surgical resection of the epileptic focus and is recommended for patients with drug-resistant focal epilepsy. However, focal brain lesions can lead to effects in distant brain regions. Similarly, the focal resection in temporal lobe epilepsy surgery has been shown to lead to functional changes distant from the resection. Here we hypothesize that there are changes in brain function caused by temporal lobe epilepsy surgery in regions distant from the resection that are due to their structural disconnection from the resected epileptic focus. Therefore, the goal of this study was to localize changes in brain function caused by temporal lobe epilepsy surgery and relate them to the disconnection from the resected epileptic focus. This study takes advantage of the unique opportunity that epilepsy surgery provides to investigate the effects of focal disconnections on brain function in humans, which has implications in epilepsy and broader neuroscience. Changes in brain function from pre- to post-epilepsy surgery were quantified in a group of temporal lobe epilepsy patients (n = 36) using a measure of resting state functional MRI activity fluctuations. We identified regions with significant functional MRI changes that had high structural connectivity to the resected region in healthy controls (n = 96) and patients based on diffusion MRI. The structural disconnection from the resected epileptic focus was then estimated using presurgical diffusion MRI and related to the functional MRI changes from pre- to post-surgery in these regions. Functional MRI activity fluctuations increased from pre- to post-surgery in temporal lobe epilepsy in the two regions most highly structurally connected to the resected epileptic focus in healthy controls and patients-the thalamus and the fusiform gyrus ipsilateral to the side of surgery (PFWE < 0.05). Broader surgeries led to larger functional MRI changes in the thalamus than more selective surgeries (P < 0.05), but no other clinical variables were related to functional MRI changes in either the thalamus or fusiform. The magnitude of the functional MRI changes in both the thalamus and fusiform increased with a higher estimated structural disconnection from the resected epileptic focus when controlling for the type of surgery (P < 0.05). These results suggest that the structural disconnection from the resected epileptic focus may contribute to the functional changes seen after epilepsy surgery. Broadly, this study provides a novel link between focal disconnections in the structural brain network and downstream effects on function in distant brain regions.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/pathology , Brain/diagnostic imaging , Brain/surgery , Brain/pathology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging , Temporal Lobe/pathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/pathology
16.
Nat Neurosci ; 26(5): 732-734, 2023 May.
Article in English | MEDLINE | ID: mdl-37095400
17.
Cell Rep ; 42(4): 112254, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36966391

ABSTRACT

Much of systems neuroscience posits the functional importance of brain activity patterns that lack natural scales of sizes, durations, or frequencies. The field has developed prominent, and sometimes competing, explanations for the nature of this scale-free activity. Here, we reconcile these explanations across species and modalities. First, we link estimates of excitation-inhibition (E-I) balance with time-resolved correlation of distributed brain activity. Second, we develop an unbiased method for sampling time series constrained by this time-resolved correlation. Third, we use this method to show that estimates of E-I balance account for diverse scale-free phenomena without need to attribute additional function or importance to these phenomena. Collectively, our results simplify existing explanations of scale-free brain activity and provide stringent tests on future theories that seek to transcend these explanations.


Subject(s)
Neurosciences , Time Factors , Brain/physiology
18.
J Neurosurg ; 139(3): 640-650, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36807210

ABSTRACT

OBJECTIVE: This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance. METHODS: The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests. RESULTS: The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations. CONCLUSIONS: This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.


Subject(s)
Epilepsy, Temporal Lobe , Neocortex , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Brain Mapping , Hypothalamus, Posterior , Arousal , Magnetic Resonance Imaging
19.
Neuroimage ; 267: 119818, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36535323

ABSTRACT

The human brain exhibits rich dynamics that reflect ongoing functional states. Patterns in fMRI data, detected in a data-driven manner, have uncovered recurring configurations that relate to individual and group differences in behavioral, cognitive, and clinical traits. However, resolving the neural and physiological processes that underlie such measurements is challenging, particularly without external measurements of brain state. A growing body of work points to underlying changes in vigilance as one driver of time-windowed fMRI connectivity states, calculated on the order of tens of seconds. Here we examine the degree to which the low-dimensional spatial structure of instantaneous fMRI activity is associated with vigilance levels, by testing whether vigilance-state detection can be carried out in an unsupervised manner based on individual BOLD time frames. To investigate this question, we first reduce the spatial dimensionality of fMRI data, and apply Gaussian Mixture Modeling to cluster the resulting low-dimensional data without any a priori vigilance information. Our analysis includes long-duration task and resting-state scans that are conducive to shifts in vigilance. We observe a close alignment between low-dimensional fMRI states (data-driven clusters) and measurements of vigilance derived from concurrent electroencephalography (EEG) and behavior. Whole-brain coactivation analysis revealed cortical anti-correlation patterns that resided primarily during higher behavioral- and EEG-defined levels of vigilance, while cortical activity was more often spatially uniform in states corresponding to lower vigilance. Overall, these findings indicate that vigilance states may be detected in the low-dimensional structure of fMRI data, even within individual time frames.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Wakefulness , Brain/physiology , Electroencephalography/methods
20.
J Neurosci ; 43(1): 142-154, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36384679

ABSTRACT

Language comprehension requires the rapid retrieval and integration of contextually appropriate concepts ("semantic cognition"). Current neurobiological models of semantic cognition are limited by the spatial and temporal restrictions of single-modality neuroimaging and lesion approaches. This is a major impediment given the rapid sequence of processing steps that have to be coordinated to accurately comprehend language. Through the use of fused functional magnetic resonance imaging and electroencephalography analysis in humans (n = 26 adults; 15 females), we elucidate a temporally and spatially specific neurobiological model for real-time semantic cognition. We find that semantic cognition in the context of language comprehension is supported by trade-offs between widespread neural networks over the course of milliseconds. Incorporation of spatial and temporal characteristics, as well as behavioral measures, provide convergent evidence for the following progression: a hippocampal/anterior temporal phonological semantic retrieval network (peaking at ∼300 ms after the sentence final word); a frontotemporal thematic semantic network (∼400 ms); a hippocampal memory update network (∼500 ms); an inferior frontal semantic syntactic reappraisal network (∼600 ms); and nodes of the default mode network associated with conceptual coherence (∼750 ms). Additionally, in typical adults, mediatory relationships among these networks are significantly predictive of language comprehension ability. These findings provide a conceptual and methodological framework for the examination of speech and language disorders, with additional implications for the characterization of cognitive processes and clinical populations in other cognitive domains.SIGNIFICANCE STATEMENT The present study identifies a real-time neurobiological model of the meaning processes required during language comprehension (i.e., "semantic cognition"). Using a novel application of fused magnetic resonance imaging and electroencephalography in humans, we found that semantic cognition during language comprehension is supported by a rapid progression of widespread neural networks related to meaning, meaning integration, memory, reappraisal, and conceptual cohesion. Relationships among these systems were predictive of individuals' language comprehension efficiency. Our findings are the first to use fused neuroimaging analysis to elucidate language processes. In so doing, this study provides a new conceptual and methodological framework in which to characterize language processes and guide the treatment of speech and language deficits/disorders.


Subject(s)
Brain , Semantics , Adult , Female , Humans , Brain/diagnostic imaging , Cognition , Language , Comprehension , Magnetic Resonance Imaging , Brain Mapping
SELECTION OF CITATIONS
SEARCH DETAIL