Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2753, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307890

ABSTRACT

The emergence of SARS-CoV-2 variants diminished the efficacy of current antiviral drugs and vaccines. Hence, identifying highly conserved sequences and potentially druggable pockets for drug development was a promising strategy against SARS-CoV-2 variants. In viral infection, the receptor-binding domain (RBD) proteins are essential in binding to the host receptor. Others, Heparan sulfate (HS), widely distributed on the surface of host cells, is thought to play a central role in the viral infection cycle of SARS-CoV-2. Therefore, it might be a reasonable strategy for antiviral drug design to interfere with the RBD in the HS binding site. In this study, we used computational approaches to analyze multiple sequences of coronaviruses and reveal important information about the binding of HS to RBD in the SARS-CoV-2 spike protein. Our results showed that the potential hot-spots, including R454 and E471, in RBD, exhibited strong interactions in the HS-RBD binding region. Therefore, we screened different compounds in the natural product database towards these hot-spots to find potential antiviral candidates using LibDock, Autodock vina and furthermore applying the MD simulation in AMBER20. The results showed three potential natural compounds, including Acetoside (ACE), Hyperoside (HYP), and Isoquercitrin (ISO), had a strong affinity to the RBD. Our results demonstrate a feasible approach to identify potential antiviral agents by evaluating the binding interaction between viral glycoproteins and host receptors. The present study provided the applications of the structure-based computational approach for designing and developing of new antiviral drugs against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/metabolism , Antiviral Agents/chemistry , Drug Development , Protein Binding , Binding Sites
2.
J Natl Cancer Inst ; 115(11): 1383-1391, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37481710

ABSTRACT

BACKGROUND: Osimertinib is the first-line therapy for patients with non-small cell lung cancer harboring epidermal growth factor receptor-activating alterations. Although osimertinib has been shown to elicit profound patient responses, cancer cells frequently develop additional alterations that sustain their proliferation capacity. This acquired resistance represents a substantial hurdle in precision medicine for patients with lung cancer. METHODS: The biological and cellular properties of the G-quadruplex ligand BMVC-8C3O and its anticancer activities were evaluated in non-small cell lung carcinomas. In addition, combined treatment with BMVC-8C3O and osimertinib was evaluated for its effects on the growth of osimertinib-resistant tumors in vivo. RESULTS: We demonstrate that BMVC-8C3O effectively suppresses c-FOS expression by stabilizing G-rich sequences located at the c-FOS promoter. The suppression c-FOS expression by BMVC-8C3O increases the sensitivity of acquired resistant cancer cells to osimertinib. Combining BMVC-8C3O and osimertinib has a synergistic effect in inhibiting the growth of acquired resistant cancers both in vitro and in mouse models. The combined inhibitory effect is not limited to BMVC-8C3O, either: several G-quadruplex ligands show varying levels of inhibition activity. We also show that simultaneous inhibition of both the c-FOS and PI3K/AKT pathways by BMVC-8C3O and osimertinib synergistically inhibits the growth of acquired resistant cancer cells. CONCLUSION: These findings unveil a synthetic lethal strategy to prevent and inhibit epidermal growth factor receptor-altered lung cancers with acquired osimertinib resistance. G-quadruplex ligands have the potential to be integrated into current osimertinib-based treatment regimens.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Ligands , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Phosphatidylinositol 3-Kinases/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism
3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373087

ABSTRACT

Chemical structures bearing a combination of aggregation-induced emission enhancement (AIEE) and intramolecular charge transfer (ICT) properties attracted the attention of many researchers. Recently, there is an increasing demand to pose tunable AIEE and ICT fluorophores that could present their conformation changes-related emission colors by adjusting the medium polarity. In this study, we designed and synthesized a series of 4-alkoxyphenyl-substituted 1,8-naphthalic anhydride derivatives NAxC using the Suzuki coupling reaction to construct donor-acceptor (D-A)-type fluorophores with alkoxyl substituents of varying carbon chain lengths (x = 1, 2, 4, 6, 12 in NAxC). To explain the observation that molecules with longer carbon chains revealed unusual fluorescence enhancement in water, we study the optical properties and evaluate their locally excited (LE) and ICT states by solvent effects combined with Lippert-Mataga plots. Then, we explored the self-assembly abilities of these molecules in water-organic (W/O) mixed solutions and observed the morphology of its nanostructure using a fluorescence microscope and SEM. The results show that NAxC, x = 4, 6, 12 show different degrees of self-assembly behaviors and corresponding aggregation-induced emission enhancement (AIEE) progresses. At the same time, different nanostructures and corresponding spectral changes can be obtained by adjusting the water ratio in the mixed solution. That is, NAxC compounds present different transitions between LE, ICT and AIEE based on the polarity, water ratio and time changes. We designed NAxC as the structure-activity relationship (SAR) of the surfactant to demonstrate that AIEE comes from the formation of micelle-like nanoaggregates, which causes a restriction of the transfer from the LE state to the ICT state, and micelle formation results in a blue-shift in emission and enhances the intensity in the aggregate state. Among them, NA12C is most likely to form micelles and the most obvious fluorescence enhancement, which will switch over time due to the nano-aggregation transition.


Subject(s)
Micelles , Water , Solvents/chemistry , Spectrometry, Fluorescence
4.
Food Chem X ; 16: 100526, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36519108

ABSTRACT

This study proposes a flexible and stretchable 3D polymer film with photonic crystals for the visible detection of spoiled milk. Thermoplastic polyurethane (TPU) was used as the substrate for the photonic crystal structure. The back barrier layer with a regular array of nanohemispheres of anodic aluminum oxide film was used as a template for electroforming a nickel mold. The nanohemisphere array was then nanoimprinted onto the TPU substrate to form a strain-controllable photonic crystal (SCPC) structure on it. Food spoilage can be easily detected by the structural color change caused by the gas it produces. Experimental results confirmed that the structural color change of the fabricated SCPC TPU film occurred when the elongation (ΔL) of the film reached 0.2 mm (1.2 %). Furthermore, spoiled milk detection experiments showed that the proposed SCPC TPU film is a highly intelligent and cost-effective biosensor for detecting spoiled food in a container.

5.
Biosens Bioelectron ; 213: 114440, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35667289

ABSTRACT

It has been found that the direct/total bilirubin ratio (D/T-BIL) is related to the survival rate of COVID-19 pneumonia. The presence of an excessive amount of bilirubin in human blood also causes liver and neurological damage, leading to death. Therefore, upon considering the adverse impact of the presence of excessive bilirubin in human blood, it has become highly imperative to detect bilirubin in a fast and label-free manner. Herein, we designed and constructed a random-crossed-woodpile nanostructure from silver nanowires to form a 3-dimensional plasmonic hotspot-rich (3D-PHS) nanostructure and successfully used it to detect direct bilirubin (D-BIL) in human blood in a label-free manner. The 3D-PHS nanochip provides rich spatial hot spots that are simultaneously responsive to SERS and SPEF effects and consequently, successfully used to measure and characterize D-BIL with a detection limit of ∼10 nM, requiring only 10µL of human serum for rapid screening, which is the first time D-BIL has been detected in a clinically relevant range. This demonstrates a simple, label-free, pretreatment-free potential biosensing technology that can be used in health care units, and further, in the efficient detection of point-of-care testing with a portable spectrometer.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nanowires , Bilirubin , COVID-19/diagnosis , Delivery of Health Care , Humans , Metal Nanoparticles/chemistry , Nanowires/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods
6.
Biomedicines ; 10(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35327357

ABSTRACT

(1) Background: Inexplicable low back and neck pain frequently results from spinal disc degeneration with an imbalanced intervertebral disc (IVD) cell homeostasis. We hypothesize that introducing MSC expressing a sustained cartilage-anabolic factor in the IVD may stimulate the mucoid materials secreted from the IVD cells, promote the MSC's chondrogenesis and maintain the hydration content providing mechanical strength to decelerate the disc degeneration progression; (2) Methods: This study expressed a cartilage-anabolic factor runx1 by a baculoviral vector (BV) transduced MSCs through a Cre/LoxP gene editing and recombination system for sustained recombinant runx1 transcription factor production. The Cre/LoxP BV modified MSCs were encapsulated by hyaluronan hydrogel, due to its' vital composition in ECM of a healthy disc and transplanted to a punctured coccygeal disc in rats through micro-injection, followed by X-ray radiography and histological analysis at the 4- and 12-weeks post-transplantation; (3) Results: Data reveals the Cre/LoxP BV system-mediated long-termed runx1 gene expression, possessing good biosafety characteristics in the in vitro cell transduction and in vivo MSCs transplantation, and maintained superior hydration content in the disc than that of mock transduced MSCs; (4) Conclusions: This proof-of-concept study fulfills the need of implanting therapeutic cells accompanied with microinjection in the disc, such as a discography and paves a road to manufacture composite hyaluronan, such as peptide modified hyaluronan as an MSC carrier for IVD regeneration in the future study.

7.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008997

ABSTRACT

Vertebral disc degenerative disease (DDD) affects millions of people worldwide and is a critical factor leading to low back and neck pain and consequent disability. Currently, no strategy has addressed curing DDD from fundamental aspects, because the pathological mechanism leading to DDD is still controversial. One possible mechanism points to the homeostatic status of extracellular matrix (ECM) anabolism, and catabolism in the disc may play a vital role in the disease's progression. If the damaged disc receives an abundant amount of cartilage, anabolic factors may stimulate the residual cells in the damaged disc to secrete the ECM and mitigate the degeneration process. To examine this hypothesis, a cartilage anabolic factor, Runx1, was expressed by mRNA through a sophisticated polyamine-based PEG-polyplex nanomicelle delivery system in the damaged disc in a rat model. The mRNA medicine and polyamine carrier have favorable safety characteristics and biocompatibility for regenerative medicine. The endocytosis of mRNA-loaded polyplex nanomicelles in vitro, mRNA delivery efficacy, hydration content, disc shrinkage, and ECM in the disc in vivo were also examined. The data revealed that the mRNA-loaded polyplex nanomicelle was promptly engulfed by cellular late endosome, then spread into the cytosol homogeneously at a rate of less than 20 min post-administration of the mRNA medicine. The mRNA expression persisted for at least 6-days post-injection in vivo. Furthermore, the Runx1 mRNA delivered by polyplex nanomicelles increased hydration content by ≈43% in the punctured disc at 4-weeks post-injection (wpi) compared with naked Runx1 mRNA administration. Meanwhile, the disc space and ECM production were also significantly ameliorated in the polyplex nanomicelle group. This study demonstrated that anabolic factor administration by polyplex nanomicelle-protected mRNA medicine, such as Runx1, plays a key role in alleviating the progress of DDD, which is an imbalance scenario of disc metabolism. This platform could be further developed as a promising strategy applied to regenerative medicine.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Gene Transfer Techniques , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy , Micelles , Nanoparticle Drug Delivery System , RNA, Messenger/administration & dosage , Animals , Disease Models, Animal , Endocytosis , Gene Expression , Genetic Therapy , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/pathology , Male , Molecular Imaging , Nanomedicine , Rats , Transgenes , Treatment Outcome , X-Ray Microtomography
8.
Sci Rep ; 11(1): 23475, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873208

ABSTRACT

Fluorescence lifetime imaging microscopy of a fluorescence probe, 3,6-bis(1-methyl-2-vinylpyridinium) carbazole diiodide (o-BMVC), provides an objective method for preoperative diagnosis of fine-needle aspiration (FNA) of thyroid nodules. The key of this o-BMVC test of FNA smears is the measurement of the digital number of o-BMVC foci in the nucleus. Thus, there are three categories classified in the o-BMVC test, which are nondiagnostic for unsatisfactory samples, benign for less numbers of o-BMVC foci, and malignant for more numbers of o-BMVC foci. The discrimination of indeterminate (including atypia, follicular neoplasm, suspicious) cytology into benign or malignant cases can reduce diagnostic uncertainty and benefit clinical decision making. This pilot study strongly suggests that the o-BMVC test is an invaluable method for diagnosing FNA samples. Particularly, the combination of FNA cytology and the o-BMVC test holds great promise to improve the efficacy of diagnosis and reduce the healthcare costs.


Subject(s)
Thyroid Nodule/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy, Fine-Needle/methods , Carbazoles/administration & dosage , Cytodiagnosis/methods , Female , Fluorescent Dyes/administration & dosage , Humans , Male , Microscopy, Fluorescence/methods , Middle Aged , Pilot Projects , Pyridinium Compounds/administration & dosage , Thyroid Gland/pathology , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Young Adult
9.
Materials (Basel) ; 14(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34442997

ABSTRACT

The use of naturally occurring materials with antibacterial properties has gained a great interest in infected wound management. Despite being an abundant resource in Vietnam, chitosan and its derivatives have not yet been intensively explored for their potential in such application. Here, we utilized a local chitosan source to synthesize chitosan oligomers (OCS) using hydrogen peroxide (H2O2) oxidation under the microwave irradiation method. The effects of H2O2 concentration on the physicochemical properties of OCS were investigated through molecular weight, degree of deacetylation, and heavy metal contamination for optimization of OCS formulation. Then, the antibacterial inhibition was examined; the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC) of OCS-based materials were determined against common skin-inhabitant pathogens. The results show that the local Vietnamese chitosan and its derivative OCS possessed high-yield purification while the molecular weight of OCS was inversely proportional and proportional to the concentration of H2O2, respectively. Further, the MIC and MBC of OCS ranged from 3.75 to less than 15 mg/mL and 7.5-15 mg/mL, respectively. Thus, OCS-based materials induce excellent antimicrobial properties and can be attractive for wound dressings and require further investigation.

10.
J Invest Dermatol ; 141(9): 2219-2228.e8, 2021 09.
Article in English | MEDLINE | ID: mdl-33744296

ABSTRACT

Lysosomal adaptation is a cellular physiological process in which the number and function of lysosomes are regulated at the transcriptional and post-transcriptional levels in response to extracellular and/or intracellular cues or lysosomal damage. Imiquimod (IMQ), a synthetic toll-like receptor 7 ligand with hydrophobic and weak basic properties, exhibits both antitumor and antiviral activity against various skin malignancies as a clinical treatment. Interestingly, IMQ has been suggested to be highly concentrated in the lysosomes of plasmacytoid dendritic cells, indicating that IMQ could modulate lysosome function after sequestration in the lysosome. In this study, we found that IMQ not only induced lysosomal membrane permeabilization and dysfunction but also increased lysosome biogenesis to achieve lysosomal adaptation in cancer cells. IMQ-induced ROS production but not lysosomal sequestration of IMQ was the major cause of lysosomal adaptation. Moreover, IMQ-induced lysosomal adaptation occurred through lysosomal calcium ion release and activation of the calcineurin/TFEB axis to promote lysosome biogenesis. Finally, depletion of TFEB sensitized skin cancer cells to IMQ-induced apoptosis in vitro and in vivo. In summary, a disruption of lysosomal adaptation might represent a therapeutic strategy for synergistically enhancing the cytotoxicity of IMQ in skin cancer cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Imiquimod/therapeutic use , Lysosomes/drug effects , Stomach Neoplasms/drug therapy , Animals , Apoptosis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Calcineurin/metabolism , Calcium Signaling , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
11.
Molecules ; 26(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429970

ABSTRACT

In this manuscript, silver nanowire 3D random crossed-wire woodpile (3D-RCW) nanostructures were designed and prepared. The 3D-RCW provides rich "antenna" and "hot spot" effects that are responsive for surface-enhanced Raman scattering (SERS) effects and plasmon-enhanced fluorescence (PEF). The optimal construction mode for the 3D-RCW, based on the ratio of silver nanowire and control compound R6G, was explored and established for use in PEF and SERS analyses. We found that the RCW nanochip capable of emission and Raman-enhanced detections uses micro levels of analysis volumes. Consequently, and SERS and PEF of pesticides (thiram, carbaryl, paraquat, fipronil) were successfully measured and characterized, and their detection limits were within 5 µM~0.05 µM in 20 µL. We found that the designed 3D plasmon-enhanced platform cannot only collect the SERS of pesticides, but also enhance the fluorescence of a weak emitter (pesticides) by more than 1000-fold via excitation of the surface plasmon resonance, which can be used to extend the range of a fluorescence biosensor. More importantly, solid-state measurement using a 3D-RCW nanoplatform shows promising potential based on its dual applications in creating large SERS and PEF enhancements.


Subject(s)
Fluorescence , Nanowires/chemistry , Silver/chemistry , Surface Plasmon Resonance , Spectrum Analysis, Raman
12.
Molecules ; 25(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291763

ABSTRACT

The major challenge in the fabrication of fluorescent silica nanoparticles (FSNs) based on dye-doped silica nanoparticles (DDSNs) is aggregation-caused fluorescence quenching. Here, we constructed an FSN based on a double emission enhancement (DEE) platform. A thio-reactive fluorescence turn-on molecule, N-butyl-4-(4-maleimidostyryl)-1,8-naphthalimide (CS), was bound to a silane coupling agent, (3-mercaptopropyl)-trimethoxysilane (MPTMS), and the product N-butyl-4-(3-(trimethoxysilyl-propylthio)styryl)-1,8-naphthalimide (CSP) was further used to fabricate a core-shell nanoparticle through the Stöber method. We concluded that the turn-on emission by CSP originated from the photoinduced electron transfer (PET) between the maleimide moiety and the CSP core scaffold, and the second emission enhancement was attributed to the aggregation-induced emission enhancement (AIEE) in CSP when encapsulated inside a core-shell nanoparticle. Thus, FSNs could be obtained through DEE based on a combination of PET and AIEE effects. Systematic investigations verified that the resulting FSNs showed the traditional solvent-independent and photostable optical properties. The results implied that the novel FSNs are suitable as biomarkers in living cells and function as fluorescent visualizing agents for intracellular imaging and drug carriers.


Subject(s)
Diagnostic Imaging/methods , Fluorescent Dyes/chemistry , Image Enhancement/methods , Nanoparticles/chemistry , Spectrometry, Fluorescence/methods , A549 Cells , Biomarkers/metabolism , Cell Line, Tumor , Drug Carriers/chemistry , Fluorescence , HeLa Cells , Humans , Naphthalimides/chemistry , Silicon Dioxide/chemistry , Solvents/chemistry
13.
Sci Technol Adv Mater ; 21(1): 562-572, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32939180

ABSTRACT

This study proposes to develop a dual-acting antibacterial film of porous chitosan (Cs) embedded with small molecular compound, which possesses photosensitive characteristics with bactericidal efficacy, to promote the accelerated recovery of infectious wounds. The Cs/small molecular compound (Cs-cpd.2) dressing was prepared using the freeze-drying method. Characterization of the synthesized Cs-cpd.2 indicated that it has high porosity and moisture absorption effect, hence enhancing the absorption of wound exudate. Experimental results showed that Cs-cpd.2 dressing has good bactericidal and bacteriostatic effects on Staphylococcus aureus under visible-light irradiation and has antibacterial effect in the dark. It was also found that the small molecular compound does not have cytotoxicity at a dose of 0-5 µM. Furthermore, Cs-cpd.2 that contained small molecular compound with a concentration of 0.3-1 µM has positive effect on both the cell viability rate and cell proliferation rate of human fibroblast CG1639. Cs-cpd.2 can significantly promote cell proliferation when the small molecular compound and the basic fibroblast growth factor bFGF were added together. Therefore, the proposed Cs-cpd.2 dressing is feasible for photodynamic therapy (PDT) and clinical wound dressing applications.

14.
J Am Chem Soc ; 142(25): 11165-11172, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32478511

ABSTRACT

The potent DNA-binding compound triaminotriazine-acridine conjugate (Z1) functions by targeting T:T mismatches in CTG trinucleotide repeats that are responsible for causing neurological diseases such as myotonic dystrophy type 1, but its binding mechanism remains unclear. We solved a crystal structure of Z1 in a complex with DNA containing three consecutive CTG repeats with three T:T mismatches. Crystallographic studies revealed that direct intercalation of two Z1 molecules at both ends of the CTG repeat induces thymine base flipping and DNA backbone deformation to form a four-way junction. The core of the complex unexpectedly adopts a U-shaped head-to-head topology to form a crossover of each chain at the junction site. The crossover junction is held together by two stacked G:C pairs at the central core that rotate with respect to each other in an X-shape to form two nonplanar minor-groove-aligned G·C·G·C tetrads. Two stacked G:C pairs on both sides of the center core are involved in the formation of pseudo-continuous duplex DNA. Four metal-mediated base pairs are observed between the N7 atoms of G and CoII, an interaction that strongly preserves the central junction site. Beyond revealing a new type of ligand-induced, four-way junction, these observations enhance our understanding of the specific supramolecular chemistry of Z1 that is essential for the formation of a noncanonical DNA superstructure. The structural features described here serve as a foundation for the design of new sequence-specific ligands targeting mismatches in the repeat-associated structures.


Subject(s)
Acridines/chemistry , DNA/chemistry , Intercalating Agents/chemistry , Triazines/chemistry , Base Pair Mismatch , Base Pairing , DNA/genetics , Nucleic Acid Conformation , Thymine/chemistry , Trinucleotide Repeats
15.
J Mater Chem B ; 7(39): 5947-5955, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31517375

ABSTRACT

A detection and degradation platform was developed to optically quantify the 6-enolate, 8-keto-dG, an important tautomer of mitochondrial mutated DNA 8-oxo-dG. We first found that 6-enolate, 8-keto-dG offers particular fluorescence emission under the conditions between pH ∼ 7 and ∼11. Thus, a mitochondria-targeting photosensitizer NV-12P was prepared to offer simultaneously photoinduced electron transfer and fluorescence resonance energy transfer (FRET) with 6-enolate, 8-keto-dG. Furthermore, NV-12P can also generate a reactive oxygen species to degrade 6-enolate, 8-keto-dG under irradiation conditions. This is the first publication about optical characterization, concentration detection and photodegradation of 6-enolate, 8-keto-dG, either in biological or in vitro applications.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/analysis , 8-Hydroxy-2'-Deoxyguanosine/chemistry , DNA, Mitochondrial/genetics , Mutation , Photolysis , DNA, Mitochondrial/chemistry , Electrochemistry , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Models, Molecular , Nucleic Acid Conformation
16.
Sci Rep ; 8(1): 16082, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382130

ABSTRACT

Using time-gated fluorescence lifetime imaging microscopy, significantly more signals from 3,6-bis(1-methyl-2-vinyl-pyridinium) carbazole diiodide (o-BMVC) foci, characterized by the longer fluorescent decay time of o-BMVC, were detected in six types of cancer cells than in three types of normal cells. Accumulating evidence suggested that the o-BMVC foci are mainly the G-quadruplex foci. The large contrast in the number of o-BMVC foci can be considered as a common signature to distinguish cancer cells from normal cells. Further study of tissue biopsy showed that the o-BMVC test provides a high accuracy for clinical detection of head and neck cancers.


Subject(s)
Biosensing Techniques/methods , Carbazoles/chemistry , Fluorescent Dyes/chemistry , G-Quadruplexes , Head and Neck Neoplasms/genetics , Mouth/metabolism , Pyridinium Compounds/chemistry , Case-Control Studies , Head and Neck Neoplasms/pathology , Humans , Microscopy, Fluorescence , Tumor Cells, Cultured
17.
Int J Mol Sci ; 19(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772675

ABSTRACT

Melanogenesis is a complex physiological mechanism involving various paracrine factors. Skin cells such as keratinocytes, fibroblasts, and melanocytes communicate with one another through secreted regulators, thereby regulating the melanocytes' bio-functions. The stem cell factor (SCF) is a paracrine factor produced by fibroblasts, and its receptor, c-kit, is expressed on melanocytes. Binding of SCF to c-kit activates autophosphorylation and tyrosine kinase to switch on its signal transmission. SCF inhibition does not suppress fibroblast proliferation in MTT assay, and SCF silencing induced mRNA expressions of paracrine factor genes, HGF, NRG-1, and CRH in qPCR results. Following UVB stimulation, gene expressions of HGF, NRG, and CRH were higher than homeostasis; in particular, HGF exhibited the highest correlation with SCF variations. We detected fibroblasts regulated SCF in an autocrine-dependent manner, and the conditioned medium obtained from fibroblast culture was applied to treat melanocytes. Melanogenesis-related genes, tyrosinase and pmel17, were upregulated under conditioned mediums with SCF silencing and exposed to UVB treatments. Melanin quantities in the melanocytes had clearly increased in the pigment content assay. In conclusion, SCF silencing causes variations in both fibroblast paracrine factors and melanocyte melanogenesis, and the differences in gene expressions were observed following UVB exposure.


Subject(s)
Fibroblasts/metabolism , Gene Silencing , Melanocytes/metabolism , Paracrine Communication , Proto-Oncogene Proteins c-kit/genetics , Stem Cell Factor/genetics , Cell Proliferation , Gene Knockdown Techniques , Humans , Melanins/biosynthesis , Proto-Oncogene Proteins c-kit/metabolism , RNA Interference , Stem Cell Factor/metabolism , Ultraviolet Rays
18.
ACS Appl Mater Interfaces ; 10(11): 9858-9864, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29493214

ABSTRACT

In this study, a nanoimprinting method was introduced to fabricate polycarbonate films with transparent and flexible photonic crystal (FPC) structures. The fabricated flexible polymer films display a full-color grating because of the nanohemispherical structures on the surface. Through the Bragg diffraction formula, it was confirmed that the FPC polymer films transfer a part of the light energy to the second-order diffraction spectrum. Furthermore, the full-color grating properties can be modulated through geometric deformation because of the film's elasticity. Additionally, anticounterfeiting features were also successfully achieved when the polymer films were either engraved with drawings and bent or patterned with fluorophores, which can be revealed under ultraviolet light. The most important aspect of this research is that the preparation of this FPC-structured polymer film is inexpensive and convenient, enabling the mass production of a new generation of smart materials.

19.
J Mater Chem B ; 6(18): 2869-2876, 2018 May 14.
Article in English | MEDLINE | ID: mdl-32254240

ABSTRACT

Traditional fluorogens with aggregation-induced emission (AIEgens) generally exhibit strong luminescence with monotonous wavelengths in the aggregated state, whereas apparent solvatochromic emission intensities and wavelengths (shift) are observed in molecules with twisted intramolecular charge transfer (TICT) characteristic molecules. Herein, we develop a platform to construct strong luminescent nanoparticles with tunable emission colors based on a TICT-AIEgen, 3,6-divinylaryl-substituted carbazole (C12P). Also based on the same molecule, through different nanoparticle fabrication approaches, fluorescent nanoparticles with different emission colors were obtained. A detailed analysis reveals that AIE and TICT characteristics play different roles in nanoparticle emission, with AIE primarily controlling the emission intensity while TICT is more involved in manipulating the emission wavelengths. Applications of the as-prepared nanoparticles in cell imaging were preliminarily demonstrated.

20.
Org Biomol Chem ; 15(37): 7936-7943, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28901370

ABSTRACT

A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.


Subject(s)
Fluorescent Dyes/chemistry , Optical Imaging , Organelles/chemistry , Cells, Cultured , Fluorescent Dyes/chemical synthesis , Humans , Hydrogen-Ion Concentration , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...