Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 44(1)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38059429

ABSTRACT

Enzymes in uracil-DNA glycosylase (UDG) superfamily are involved in removal of deaminated nucleobases such as uracil, methylcytosine derivatives such as formylcytosine and carboxylcytosine, and other base damage in DNA repair. UDGX is the latest addition of a new class to the UDG superfamily with a sporadic distribution in bacteria. UDGX type enzymes have a distinct biochemical property of cross-linking itself to the resulting AP site after uracil removal. Built on previous biochemical and structural analyses, this work comprehensively investigated the kinetic and enzymatic properties of Mycobacterium smegmatis UDGX. Kinetics and mutational analyses, coupled with structural information, defined the roles of E52, D56, D59, F65 of motif 1, H178 of motif 2 and N91, K94, R107 and H109 of motif 3 play in uracil excision and cross-linking. More importantly, a series of quantitative analyses underscored the structural coupling through inter-motif and intra-motif interactions and subsequent functional coupling of the uracil excision and cross-linking reactions. A catalytic model is proposed, which underlies this catalytic feature unique to UDGX type enzymes. This study offers new insight on the catalytic mechanism of UDGX and provides a unique example of enzyme evolution.


Subject(s)
DNA Repair , Uracil-DNA Glycosidase , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , Catalysis , Uracil
2.
DNA Repair (Amst) ; 119: 103408, 2022 11.
Article in English | MEDLINE | ID: mdl-36179537

ABSTRACT

5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites. mC oxidative derivatives may also be generated from Fenton chemistry and γ-irradiation. In screening DNA glycosylase activity in UDG superfamily, we identified new activity on fC- and caC-containing DNA in family 2 MUG/TDG and family 6 HDG enzymes. Surprisingly, we found a glycosylase SMUG2 from bacterium Pedobacter heparinus (Phe), a subfamily of family 3 SMUG1 DNA glycosylase, displayed catalytic activity towards not only DNA containing uracil, but also fC and caC. Given the sequence and structural differences between the family 3 and other family enzymes, we investigated the catalytic mechanism using mutational, enzyme kinetics and molecular modeling approaches. Mutational analysis and kinetics measurements identified I62, N63 and F76 of motif 1, and H205 of motif 2 in Phe SMUG2 as important catalytic residues, of which H205 of motif 2 played a critical role in catalyzing the removal of fC and caC. A catalytic model underlying the roles of these residues was proposed. The structural and catalytic differences between Phe SMUG2 and human TDG were compared by molecular modeling and molecular dynamics simulations. This study expands our understanding of DNA glycosylase capacity in UDG superfamily and provides insights into the molecular mechanism of fC and caC excision in Phe SMUG2.


Subject(s)
Thymine DNA Glycosylase , Uracil-DNA Glycosidase , 5-Methylcytosine , Cytosine , DNA/metabolism , DNA Repair , Humans , Oxidative Stress , Pedobacter , Thymine , Thymine DNA Glycosylase/genetics , Uracil , Uracil-DNA Glycosidase/metabolism
3.
FEBS J ; 289(20): 6420-6434, 2022 10.
Article in English | MEDLINE | ID: mdl-35607831

ABSTRACT

Uracil-DNA glycosylase (UDG) initiates base excision repair (BER) by removing damaged or modified nucleobases during DNA repair or mammalian demethylation. The UDG superfamily consists of at least six families with a variety of catalytic specificities and functions. Deinococcus radiodurans, an extreme radiation resistant bacterium, contains multiple members of UDG enzymes within its genome. The present study reveals that the putative protein, DR0022, is a uracil-DNA glycosylase that requires acidic conditions for its glycosylase activity, which is the first case of such an enzyme within the UDG superfamily. The key residues in the catalytic motifs are investigated by biochemical, enzyme kinetics, and de novo structural prediction, as well as molecular modeling analyses. The structural and catalytic roles of several distinct residues are discussed in light of predicted and modeled DR0022 glycosylase structures. The spontaneous mutation rate analysis performed in a dr0022 deficient D. radiodurans strain indicated that the dr0022 gene plays a role in mutation prevention. Furthermore, survival rate analysis in a dr0022 deficient D. radiodurans strain demonstrated its role in stress resistance, including γ-irradiation. Additionally, the novel acid UDG activity in relationship to its in vivo roles is discussed. This work underscores the functional diversity in the UDG superfamily.


Subject(s)
Deinococcus , Uracil-DNA Glycosidase , Amino Acid Sequence , Animals , DNA Repair , Deinococcus/genetics , Humans , Mammals/metabolism , Models, Molecular , Uracil/metabolism , Uracil-DNA Glycosidase/chemistry
4.
PLoS One ; 12(6): e0179265, 2017.
Article in English | MEDLINE | ID: mdl-28594912

ABSTRACT

Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state.


Subject(s)
Biomarkers, Tumor/metabolism , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Models, Biological , Animals , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...