Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617277

ABSTRACT

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

2.
Front Microbiol ; 14: 1138039, 2023.
Article in English | MEDLINE | ID: mdl-36937303

ABSTRACT

Streptococcus agalactiae (Group B Streptococcus, GBS) is a major cause of neonatal infections with high morbidity and mortality, and clindamycin is the main antibiotic used to treat GBS infections in patients allergic to penicillin. We aimed to analyse the antibiotic sensitivity, sequence types, serotypes, virulence factors, and antibiotic resistance mechanisms of clinically isolated clindamycin-resistant S. agalactiae and provide basic data for the treatment, prevention, and control of clinical infection of S. agalactiae. A total of 110 strains of clindamycin-resistant S. agalactiae were collected from two tertiary hospitals in Hebei, China. We performed antibiotic sensitivity tests for 11 antibiotics on these strains and whole-genome sequencing analysis. All the strains were susceptible to penicillin, ampicillin, linezolid, vancomycin, tigecycline, and quinupristin-dalfopristin. Resistance to erythromycin, levofloxacin, tetracycline, and chloramphenicol were also observed. Genome sequence analysis revealed that all strains belonged to 12 sequence types (STs) related to six cloning complexes (CCs), namely CC10, CC19, CC23, CC651, CC1, and CC17. Five serotypes were identified, including IA, IB, II, III, and V. The most prominent resistance genes were mreA (100%) and ermB (81.8%). Furthermore, cfb, cylE, pavA and the gene cluster related to the pili were 100% present in all strains, followed by lmb (95.5%) and srr1 (67.2%). This study found that clindamycin-resistant S. agalactiae showed polymorphisms in molecular types and serotypes. Furthermore, multiple virulence factor genes have been identified in their genomes.

3.
Sci Adv ; 9(4): eadd7474, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36696507

ABSTRACT

Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming, encrustation, and host protein deposition, which are major challenges associated with preventing CAUTIs. After screening ~400 acrylate polymers, poly(tert-butyl cyclohexyl acrylate) was selected for its biofilm- and encrustation-resistant properties. When combined with the swarming inhibitory poly(2-hydroxy-3-phenoxypropyl acrylate), the copolymer retained the bioinstructive properties of the respective homopolymers when challenged with Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Urinary tract catheterization causes the release of host proteins that are exploited by pathogens to colonize catheters. After preconditioning the copolymer with urine collected from patients before and after catheterization, reduced host fibrinogen deposition was observed, and resistance to diverse uropathogens was maintained. These data highlight the potential of the copolymer as a urinary catheter coating for preventing CAUTIs.


Subject(s)
Polymers , Urinary Tract Infections , Humans , Urinary Catheterization , Biofilms , Urinary Catheters/microbiology , Urinary Tract Infections/prevention & control , Urinary Tract Infections/microbiology , Bacteria , Escherichia coli
4.
Pathogens ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422606

ABSTRACT

Background: Streptococcus agalactiae (Group B Streptococcus, GBS) is the most common cause of serious infections in the first 3 months of life worldwide. The pathogenicity of GBS is closely related to serotypes, surface proteins and virulence factors, and the distribution of them may vary temporally and geographically. However, data related to GBS surface proteins and virulence determinants in China are very few. The aim of this study is to investigate the genetic characteristics of clinical GBS isolates from infected infants. Methods: We recovered GBS isolates from infected infants younger than 3 months during 2017−2021 at Maternal and Child Health Hospital of Hubei Province in China. We assessed the GBS serotypes, surface proteins, virulence determinants and antibiotic resistance genes distribution, by Multilocus sequence typing (MLST) and whole-genome sequencing analysis. Results: Among 97 isolates (81 EOD and 16 LOD), 5 serotypes were detected. Serotype III was the most represented (49.5%), followed by type Ib (20.6%). The isolates belonged to 17 different sequence types (STs) that grouped into the 8 clonal complexes (CCs). The most frequently identified ST was ST17 (23.7%). The most predominant surface protein of alpha-protein-like (alp) family (one of the protein components of the GBS surface antigen, resistant to trypsin) present was Rib (41.2%), which was mainly detected in serotype III. The srr1, which encodes Srr1 protein, was identified in 54.6% of isolates. The hvgA encoding for hypervirulent GBS adhesin can be detected in all 24 serotype III GBS. Among the pilus islands genes, 50% and 58.8% of the isolates were positive for pi-1 and pi-2a genes, respectively. The presence of pi-2b was mainly associated with serotype III/CC17 strains; 56.7% of isolates carried tetM, tetO/tetL, ermB antibiotic resistant genes. Among all the virulence genes detected, the cfb-cylE-lmb-pavA pattern was the main virulence gene profile (81.4%), mainly in serotype III/CC17. Conclusions: The whole genomic sequencing data revealed the high variation in surface proteins, determining virulence and antibiotic resistance in clinical isolates from 97 GBS infected infants. These data provide insightful characteristics of genetic features of GBS. Constant epidemiological surveillance is warranted to provide information on the GBS pathogenic dynamics and antibiotic resistance profiles in the surveyed areas for improving therapeutic outcomes.

5.
Microbiol Resour Announc ; 11(9): e0044822, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35997498

ABSTRACT

We report the draft genome sequence of the laboratory strain Staphylococcus aureus NCTC 6571-UB, a strain that was derived from S. aureus NCTC 6571. This strain was selected for sequencing in order to provide information on the genome dynamics and the acquired resistance genes for penicillin G, trimethoprim, and sulfamethoxazole resistance.

6.
Microbiol Resour Announc ; 11(9): e0064622, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35993720

ABSTRACT

We report the draft genome sequence and antibiotic susceptibility of Pseudomonas aeruginosa strain PAO1-UB, a subline of the common reference strain PAO1. This strain was sequenced in order to provide information on the genome dynamics of PAO1 sublines and their genes conferring resistance to multiple antibiotics.

7.
BMC Res Notes ; 15(1): 107, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303951

ABSTRACT

OBJECTIVE: The naked mole rats (NMRs, Heterocephalus glaber) are subterranean rodents that belong to the family Bathyergidae. They gained the attention of the scientific community for their exceptionally long lifespan of up to 30 years and have become an animal model of biomedical research on neurodegenerative diseases, aging and cancer. NMRs dig and survive in a maze of underground tunnels and chambers and demarcate toilet chambers for defecation and urination. Due to their coprophagic behaviours, we believed that the toilet chamber might play a role in maintaining optimal health of the NMRs. A 16S rRNA gene amplicon sequencing was performed to characterize the bacterial microbiome of faecal samples collected from the toilet chamber of a laboratory NMR colony. RESULTS: Four faecal samples were collected at different time points from the same toilet chamber of a laboratory NMR colony for analysis. The 16S rRNA gene amplicon sequencing revealed that bacterial phyla Firmicutes and Bacteroidetes were the dominant taxa in the bacterial microbiome of NMRs. The relative abundance of the bacterial taxa shifted substantially between time points, indicating a dynamic microbiome in the toilet chamber. The data provided an insight to the faecal microbiome of NMRs in the toilet chamber.


Subject(s)
Bathroom Equipment , Microbiota , Animals , Disease Models, Animal , Mole Rats/genetics , RNA, Ribosomal, 16S/genetics
8.
Front Cell Infect Microbiol ; 11: 651968, 2021.
Article in English | MEDLINE | ID: mdl-34109134

ABSTRACT

Maternal vaginal/rectal colonization of group B streptococcus (GBS) is a main risk for neonatal invasive infection. Efficient determination of GBS colonization in pregnant women is crucial. This study aimed to investigate the prevalence of GBS carriage and evaluate the diagnostic performance of six methodologies for GBS screening conducted in China, including blood agar plate, liquid chromogenic medium, and loop-mediated isothermal amplification (LAMP) without pre-enrichment, chromogenic agar plate with pre-enrichment, and GBS antigen detection without and with pre-enrichment in comparison with the standard reference method (Lim broth-enriched subculture with plating on 5% sheep blood agar). Vaginal/rectal swabs were collected from 1,281 pregnant women at 35-37 weeks of gestation. Of them, 309 were taken in triplicate, one for Lim broth-enriched subculture, one for blood agar plate, and the third for GBS antigen detection (Reagent W); 177 were acquired in duplicate, one for Lim broth-enriched subculture and the other for GBS antigen detection (Reagent H); 502 were obtained in duplicate, one for Lim broth-enriched subculture and the other for liquid chromogenic medium; 158 were collected in duplicate, one for Lim broth-enriched subculture and the other for LAMP; and 135 were inoculated in Lim broth-enriched for GBS antigen detection (Reagent W) and subculture with chromogenic agar plate and 5% blood agar plate. The overall prevalence of GBS carriage was 10.1% (130/1,281, 95% CI: 8.5-12.1%) according to the standard reference method. Compared with the standard reference method, the LAMP had excellent performance of sensitivity (100%, 95%CI: 83.4-100%), specificity (94%, 95%CI: 88.1-97.1%), and Yoden index (0.940); as well as the blood agar plate with sensitivity (81.5%, 95%CI: 61.3-93.0%), specificity (100%, 95%CI: 98.3-100.0%), and Yoden index (0.815). The other four methods were not sufficient to reach the threshold in terms of sensitivity or specificity compared to the standard reference method. Furthermore, for LAMP, results can be obtained within 0.5-1 h, while for blood agar plate, which needed 24-48 h, and further identification was required. Our data suggested that the performance of LAMP was highly comparable to the standard Lim broth-enriched subculture and LAMP is considered as an alternative for fast and accurate GBS screening.


Subject(s)
Pregnancy Complications, Infectious , Streptococcal Infections , China , Culture Media , Female , Humans , Infant, Newborn , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pregnancy , Pregnant Women , Sensitivity and Specificity , Streptococcus agalactiae , Vagina
10.
Front Microbiol ; 11: 609526, 2020.
Article in English | MEDLINE | ID: mdl-33569045

ABSTRACT

Fluoroquinolone (FQ)-resistant Group B Streptococcus (GBS) has been reported with considerable cross-resistance, worsening the crisis of multidrug-resistant (MDR) GBS in clinical settings. However, national epidemiological data on FQ-resistant GBS in mainland China have not been well-characterized. This study aimed to determine the prevalence of FQ resistance among GBS from neonatal invasive infections and maternal colonization in northern and southern China, to investigate the serotyping, multilocus sequence typing, and antibiotic cross-resistance, and to characterize the mutations in gyrA and parC genes in quinolone resistance-determining region (QRDR). In order to provide a comprehensive view of the location and structure of resistance genes, whole-genome sequencing on III/ST19 MDR isolates were performed. Among 426 GBS, 138 (32.4%) were FQ resistant, with higher prevalence in northern China than in southern China in both neonates (57.8%, 37/64 vs. 21.7%, 39/180) and pregnant women (50.9%, 29/57 vs. 26.4%, 33/125). Serotypes were distributed as III (48.5%), Ib (39.9%), V (6.5%), and Ia (5.1%). Sequence types were mainly ST19 (53.6%) and ST10 (39.1%), followed by ST12 (1.4%), ST17 (1.4%), ST23 (1.4%), and 0.7% each of ST27, ST188, ST197, and ST597. ST19 isolates were more prevalent in southern China than in northern China in both neonates (64.1%, 25/39 vs. 27.0%, 10/37) and pregnant women (81.8%, 27/33 vs. 41.4%, 12/29), whereas ST10 isolates were more common in northern China than in southern China in both neonates (64.9%, 24/37 vs. 20.5%, 8/39) and pregnant women (58.6%, 17/29 vs. 15.2%, 5/33). Serotype III isolates were mainly ST19 (89.6%, 60/67), while Ib isolates were largely ST10 (94.5%, 52/55). Sequencing data revealed several mutations in QRDR, including Ser81Leu in gyrA (99.2%, 130/131), Ser79Phe or Tyr in parC (76.2%, 48/63), and a previously unreported Ile218Thr and Ile219Phe double mutation pattern (49.2%, 31/63) in parC. ST10 isolates were associated with Ser79Phe (84%, 21/25), while ST19 isolates were limited to Ser79Tyr (95.7%, 22/23). A new integrative and conjugative element (ICE) harboring tetM and gyrA genes was identified in a III/ST19 isolate. This study investigates the molecular characteristics of FQ-resistant GBS in northern and southern China, emphasizing the need for continuous surveillance geographically and further research to characterize the mechanisms of ICE transfer.

11.
Front Cell Infect Microbiol ; 10: 577031, 2020.
Article in English | MEDLINE | ID: mdl-33585264

ABSTRACT

Group B Streptococcus (GBS) is an important etiological agent of maternal and neonatal infections as well as postpartum women and individuals with impaired immunity. We developed and evaluated a rapid classification method for sequence types (STs) of GBS based on statistic models with Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF/MS). Whole-cell lysates MALDI-TOF/MS analysis was performed on 235 well-characterized GBS isolates from neonatal invasive infections in a multi-center study in China between 2015 and 2017. Mass spectra belonging to major STs (ST10, ST12, ST17, ST19, ST23) were selected for model generation and validation. Recognition and cross validation values were calculated by Genetic Algorithm-K Nearest Neighbor (GA-KNN), Supervised Neural Network (SNN), QuickClassifier (QC) to select models with the best performance for validation of diagnostic efficiency. Informative peaks were further screened through peak statistical analysis, ST subtyping MSP peak data and mass spectrum visualization. For major STs, the ML models generated by GA-KNN algorithms attained highest cross validation values in comparison to SNN and QC algorithms. GA-KNN models of ST10, ST17, and ST12/ST19 had good diagnostic efficiency, with high sensitivity (95-100%), specificity (91.46%-99.23%), accuracy (92.79-99.29%), positive prediction value (PPV, 80%-92.68%), negative prediction value (NPV, 94.32%-99.23%). Peak markers were firstly identified for ST10 (m/z 6250, 3125, 6891) and ST17 strains (m/z 2956, 5912, 7735, 5218). Statistical models for rapid GBS ST subtyping using MALDI-TOF/MS spectrometry contributes to easier epidemical molecular monitoring of GBS infection diseases.


Subject(s)
Streptococcal Infections , Streptococcus agalactiae , China , Female , Humans , Infant, Newborn , Models, Statistical , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Streptococcal Infections/diagnosis , Streptococcus agalactiae/genetics
12.
Infect Drug Resist ; 12: 3797-3805, 2019.
Article in English | MEDLINE | ID: mdl-31819560

ABSTRACT

BACKGROUND: Neonatal sepsis (NS) is one of the leading causes of infant morbidity and mortality, but little is known about pathogen incidence and distribution in China. METHODS: In this retrospective study (January 2012 to December 2016), culture-proven cases aged less than 28 days with diagnosed NS in the Guangzhou Women and Children's Medical Center, South China, were analyzed for pathogen incidence and antimicrobial resistance. RESULTS: A total of 620 isolates were identified from 597 NS cases. Gram-negative bacteria (n=371, 59.8%) dominated over Gram-positive bacteria (n=218, 35.2%) and fungi (n=30, 4.8%). Klebsiella pneumoniae (21.9%), Escherichia coli (21.9%), group B Streptococcus (GBS, 13.2%), and Staphylococcus aureus (6.8%) were the four most predominant pathogens. In early-onset sepsis (EOS), GBS (30.0%) and E. coli (20.0%) were dominant, whereas in late-onset sepsis (LOS), K. pneumoniae (25.6%) and E. coli (22.4%) were dominant. E. coli (25.2%) and GBS (17.7%) were the most frequently isolated from term patients, whereas K. pneumoniae was the most frequently isolated from preterm patients (34.9%). Of the infected infants, 9.5% died from sepsis, most commonly by E. coli infection (16.2%). Among 91,215 live births (LBs) delivered in the study hospital (2012-2016), 252 infants developed sepsis infection (2.76 per 1000 LBs, 95% CI 2.4-3.1), including EOS (0.78 per 1000 LBs) and LOS (2.13 per 1000 LBs). All GBS isolates were susceptible to ß-lactam antibiotics, and S. aureus, including methicillin-resistant isolates, were susceptible to vancomycin. An extended-spectrum ß-lactamase producer was identified in 37.3% of E. coli and 50.4% of K. pneumoniae. CONCLUSION: K. pneumoniae was the most frequent pathogen in culture-proven NS in South China, primarily associated with LOS in preterm, whereas GBS was the dominant pathogen in EOS. E. coli was common in both episodes with the highest mortality.

13.
BMC Infect Dis ; 19(1): 812, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533652

ABSTRACT

BACKGROUND: Invasive group B Streptococcus (GBS) disease in Chinese infants has gradually gained attention in recent years, but the molecular epidemiology of the pathogen is still not well known. METHODS: This multicenter study retrospectively investigated distribution of capsular serotypes, sequence types (STs), and hypervirulent GBS adhesin gene (hvgA) in clinical GBS isolates that caused invasive disease in infants aged < 3 months of age in southern mainland China between January 2013 and June 2016. Genes for antibiotic resistance to tetracycline, erythromycin, and clindamycin were also examined. RESULTS: From a total of 93 GBS isolates taken from 34 early-onset disease (EOD, 0-6 days after birth) and 59 late-onset disease (LOD, 7-89 days after birth) cases, four serotypes were identified: serotypes III (79.6%), Ib (12.9%), Ia (4.3%), and V (3.2%). Serotype III accounted for 73.5% of EOD and 83.1% of LOD and was responsible for 75.5% of cases involving meningitis. Fifteen STs were found, with the majority being ST17 (61.3%), ST12 (7.5%), ST19 (7.5%), and others (23.7%). 96.8% of STs belonged to only five clonal complexes (CCs): CC17 (64.5%), CC10 (12.9%), CC19 (9.7%), CC23 (6.5%), and CC1 (3.2%). The hvgA gene was detected in 66.7% of GBS isolates and 95% of CC17 isolates, all of which were serotype III except one serotype Ib/CC17 isolate. A large proportion of GBS isolates were found to be resistant to tetracycline (93.5%), clindamycin (65.5%), and erythromycin (60.2%). Genes of tetO (74.7%) and tetM (46.0%) were found in tetracycline resistant isolates, linB (24.6%) in clindamycin resistant isolates, and ermB (87.5%) and mefA (3.6%) in erythromycin resistant isolates. CONCLUSION: Our results reveal higher prevalence of serotype III, ST17, CC17, hvgA expressing, and antibiotic resistant GBS isolates than previously reported in southern mainland China. This study provides guidance for appropriate measures of prevention and control to be taken in the future.


Subject(s)
Streptococcal Infections/diagnosis , Streptococcus agalactiae/isolation & purification , Adhesins, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , China/epidemiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Bacterial/drug effects , Humans , Infant , Infant, Newborn , Multilocus Sequence Typing , Prevalence , Retrospective Studies , Serogroup , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Streptococcal Infections/pathology , Streptococcus agalactiae/genetics
14.
Chem Commun (Camb) ; 55(66): 9765-9768, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31355394

ABSTRACT

Bacterial quorum sensing has been implicated in a number of pathogenic bacterial processes, such as biofilm formation, making it a crucial target for developing materials with a novel antibiotic mode of action. This paper describes poly(N-isopropyl acrylamide) that has been covalently linked, at multiple chain ends, to homoserine lactone to give a highly branched polymer functionalized with a key messenger molecule implicated in QS. This novel functional material has shown promising anti-QS activity in a Chromobacterium violaceum assay.


Subject(s)
Acrylamides/pharmacology , Chromobacterium/drug effects , Quorum Sensing/drug effects , Biofilms/drug effects , Chromobacterium/physiology
15.
Infect Drug Resist ; 11: 2561-2569, 2018.
Article in English | MEDLINE | ID: mdl-30573985

ABSTRACT

BACKGROUND: A multidrug-resistant (MDR) RR2 gene cluster was identified by whole-genome sequencing in several highly virulent (ST-17) Group B streptococcus (GBS) isolates, which caused neonatal invasive infections in southern China in 2016. Tracing the transmission and distribution of MDR isolates in this area is important for the effective management of future infections. The aim of this study was to obtain longitudinal data of MDR isolates to monitor epidemiological trends of general common isolates in southern China, and provide evidence for future characterization of antimicrobial resistance mechanisms. METHODS: Clinical information and antimicrobial susceptibility of GBS isolates were acquired from electronic information management system databases of the hospital under study between January 2011 and December 2017. To confirm the presence of intact RR2, the tetO, ant6, lnuB, and ant9 genes located upstream, midstream, and downstream of RR2 were detected by PCR and DNA sequencing. RESULTS: A total of 149 cases of neonatal invasive GBS infection were identified during the period 2011-2017. Among them, 119 cases (79.9%) were caused by MDR isolates, with a general increasing trend over the past 7 years. Further characterization of 11 isolates showed that six isolates causing late-onset disease (LOD) carry the tetO, ant6, and lnuB genes, which are located on RR2. Moreover, lnuB and ant9 consistently co-occurred in GBS isolates, which suggests their close proximity to one another in the RR2 gene cluster. CONCLUSION: The MDR GBS is responsible for a large number of neonatal invasive infections and occurs with increasing frequency over time. Particularly, the MDR GBS isolates that cause LOD are more likely to carry the RR2 gene cluster, compared with those that cause early-onset disease. The rise in number of MDR GBS isolates emphasizes the pressing need for continuous surveillance to monitor their antibiotic susceptibility and epidemiology.

16.
Front Microbiol ; 9: 1104, 2018.
Article in English | MEDLINE | ID: mdl-29892277

ABSTRACT

Pseudomonas aeruginosa is a rod-shaped Gram-negative bacterium which is notably known as a pathogen in humans, animals, and plants. Infections caused by P. aeruginosa especially in hospitalized patients are often life-threatening and rapidly increasing worldwide throughout the years. Recently, multidrug-resistant P. aeruginosa has taken a toll on humans' health due to the inefficiency of antimicrobial agents. Therefore, the rapid and advanced diagnostic techniques to accurately detect this bacterium particularly in clinical samples are indeed necessary to ensure timely and effective treatments and to prevent outbreaks. This review aims to discuss most recent of state-of-the-art molecular diagnostic techniques enabling fast and accurate detection and identification of P. aeruginosa based on well-developed genotyping techniques, e.g., polymerase chain reaction, pulse-field gel electrophoresis, and next generation sequencing. The advantages and limitations of each of the methods are also reviewed.

17.
BMC Infect Dis ; 18(1): 14, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29310577

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) is a leading cause of morbidity and mortality in infants in both developed and developing countries. To our knowledge, only a few studies have been reported the clinical features, treatment and outcomes of the GBS disease in China. The severity of neonatal GBS disease in China remains unclear. Population-based surveillance in China is therefore required. METHODS: We retrospectively collected data of <3 months old infants with culture-positive GBS in sterile samples from three large urban tertiary hospitals in South China from Jan 2011 to Dec 2014. The GBS isolates and their antibiotic susceptibility were routinely identified in clinical laboratories in participating hospitals. Serotyping and multi-locus sequence typing (MLST) were also conducted for further analysis of the neonatal GBS disease. RESULTS: Total 70 cases of culture-confirmed invasive GBS infection were identified from 127,206 live births born in studying hospitals, giving an overall incidence of 0.55 per 1000 live births (95% confidence interval [CI] 0.44-0.69). They consisted of 49 with early-onset disease (EOD, 0.39 per 1000 live births (95% CI 0.29-0.51)) and 21 with late-onset disease (LOD, 0.17 per 1000 live births (95% CI 0.11-0.25)). The incidence of EOD increased significantly over the studying period. Five infants (4 EOD and 1 LOD) died before discharge giving a mortality rate of 7.1% and five infants (7.1%, 2 EOD and 3 LOD) had neurological sequelae. Within 68 GBS isolates from GBS cases who born in the studying hospitals or elsewhere, serotype III accounted for 77.9%, followed by Ib (14.7%), V (4.4%), and Ia (2.9%). MLST analysis revealed the presence of 13 different sequence types among the 68 GBS isolates and ST-17 was the most frequent sequence type (63.2%). All isolates were susceptible to penicillin, ceftriaxone, vancomycin and linezolid, while 57.4% and 51.5% were resistant to erythromycin and clindamycin, respectively. CONCLUSIONS: This study gains the insight into the spectrum of GBS infection in south China which will facilitate the development of the guidance for reasonable antibiotics usage and will provide evidence for the implementation of potential GBS vaccines in the future.


Subject(s)
Streptococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , China/epidemiology , Drug Resistance, Bacterial , Female , Humans , Incidence , Infant , Infant, Newborn , Infant, Newborn, Diseases/epidemiology , Infant, Newborn, Diseases/microbiology , Male , Multilocus Sequence Typing , Retrospective Studies , Serogroup , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Streptococcus/classification , Streptococcus/drug effects , Streptococcus/isolation & purification
18.
Genome Announc ; 5(13)2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28360153

ABSTRACT

Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation.

19.
Front Microbiol ; 8: 2671, 2017.
Article in English | MEDLINE | ID: mdl-29375533

ABSTRACT

Aggregating and forming biofilms on biotic or abiotic surfaces are ubiquitous bacterial behaviors under various conditions. In clinical settings, persistent presence of biofilms increases the risks of healthcare-associated infections and imposes huge healthcare and economic burdens. Bacteria within biofilms are protected from external damage and attacks from the host immune system and can exchange genomic information including antibiotic-resistance genes. Dispersed bacterial cells from attached biofilms on medical devices or host tissues may also serve as the origin of further infections. Understanding how bacteria develop biofilms is pertinent to tackle biofilm-associated infections and transmission. Biofilms have been suggested as a continuum of growth modes for adapting to different environments, initiating from bacterial cells sensing their attachment to a surface and then switching cellular physiological status for mature biofilm development. It is crucial to understand bacterial gene regulatory networks and decision-making processes for biofilm formation upon initial surface attachment. Pseudomonas aeruginosa is one of the model microorganisms for studying bacterial population behaviors. Several hypotheses and studies have suggested that extracellular macromolecules and appendages play important roles in bacterial responses to the surface attachment. Here, I review recent studies on potential molecular mechanisms and signal transduction pathways for P. aeruginosa surface sensing.

20.
PeerJ ; 4: e2223, 2016.
Article in English | MEDLINE | ID: mdl-27547539

ABSTRACT

Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.

SELECTION OF CITATIONS
SEARCH DETAIL
...