Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Sci Rep ; 14(1): 11166, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750148

ABSTRACT

Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Phantoms, Imaging , Proton Therapy , Magnetic Resonance Imaging/methods , Proton Therapy/methods , Humans , Animals , Swine , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Radiotherapy Dosage
2.
Ultramicroscopy ; 262: 113982, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38692140

ABSTRACT

Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption. Here we introduce a bolometer platform that directly measures the absorbed thermal energy of the sample and demonstrates that it can help to analyze the atomic number (Z) of the investigated samples. The technique, named Atomic Number Electron Microscopy (ZEM), employs the conservation of energy as the foundation of standardization and can serve as a nearly ideal BSE detector. Our approach combines the strengths of both BSE and ZEM detectors, simplifying quantitative analysis for samples of various shapes and sizes. The complementary relation between the ZEM and BSE signals also makes the detection of light elements or compounds more accessible than existing microanalysis techniques.

3.
ArXiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38800650

ABSTRACT

This study aims to develop a digital twin (DT) framework to enhance adaptive proton stereotactic body radiation therapy (SBRT) for prostate cancer. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept, with the goal of improving treatment quality, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions. Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT. The framework improves treatment plans by utilizing patient-specific CTV setup uncertainty, which is usually smaller than conventional clinical setups. This research contributes to the ongoing efforts to enhance the efficiency and efficacy of prostate radiotherapy, with ultimate goals of improving patient outcomes and life quality.

4.
ArXiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38745700

ABSTRACT

Magnetic resonance imaging (MRI) has revolutionized medical imaging, providing a non-invasive and highly detailed look into the human body. However, the long acquisition times of MRI present challenges, causing patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, researchers are exploring various techniques to reduce acquisition time and improve the overall efficiency of MRI. One such technique is compressed sensing (CS), which reduces data acquisition by leveraging image sparsity in transformed spaces. In recent years, deep learning (DL) has been integrated with CS-MRI, leading to a new framework that has seen remarkable growth. DL-based CS-MRI approaches are proving to be highly effective in accelerating MR imaging without compromising image quality. This review comprehensively examines DL-based CS-MRI techniques, focusing on their role in increasing MR imaging speed. We provide a detailed analysis of each category of DL-based CS-MRI including end-to-end, unroll optimization, self-supervised, and federated learning. Our systematic review highlights significant contributions and underscores the exciting potential of DL in CS-MRI. Additionally, our systematic review efficiently summarizes key results and trends in DL-based CS-MRI including quantitative metrics, the dataset used, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based CS-MRI in the advancement of medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based CS-MRI publications and publicly available datasets - https://github.com/mosaf/Awesome-DL-based-CS-MRI.

6.
Phys Med Biol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714192

ABSTRACT

OBJECTIVE: This study developed an unsupervised motion artifact reduction method for MRI images of patients with brain tumors. The proposed novel design uses multi-parametric multicenter contrast-enhanced T1W (ceT1W) and T2-FLAIR MRI images. Approach: The proposed framework included two generators, two discriminators, and two feature extractor networks. A 3-fold cross-validation was used to train and fine-tune the hyperparameters of the proposed model using 230 brain MRI images with tumors, which were then tested on 148 patients' in-vivo datasets. An ablation was performed to evaluate the model's compartments. Our model was compared with Pix2pix and CycleGAN. Six evaluation metrics were reported, including normalized mean squared error (NMSE), structural similarity index (SSIM), multi-scale-SSIM (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and multi-scale gradient magnitude similarity deviation (MS-GMSD). Artifact reduction and consistency of tumor regions, image contrast, and sharpness were evaluated by three evaluators using Likert scales and compared with ANOVA and Tukey's HSD tests. Main results: On average, our method outperforms comparative models to remove heavy motion artifacts with the lowest NMSE (18.34±5.07%) and MS-GMSD (0.07±0.03) for heavy motion artifact level. Additionally, our method creates motion-free images with the highest SSIM (0.93±0.04), PSNR (30.63±4.96), and VIF (0.45±0.05) values, along with comparable MS-SSIM (0.96±0.31). Similarly, our method outperformed comparative models in removing in-vivo motion artifacts for different distortion levels except for MS- SSIM and VIF, which have comparable performance with CycleGAN. Moreover, our method had a consistent performance for different artifact levels. For the heavy level of motion artifacts, our method got the highest Likert scores of 2.82±0.52, 1.88±0.71, and 1.02±0.14 (p-values<<0.0001) for our method, CycleGAN, and Pix2pix respectively. Similar trends were also found for other motion artifact levels. Significance: Our proposed unsupervised method was demonstrated to reduce motion artifacts from the ceT1W brain images under a multi-parametric framework.

7.
Med Phys ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588512

ABSTRACT

PURPOSE: Positron Emission Tomography (PET) has been a commonly used imaging modality in broad clinical applications. One of the most important tradeoffs in PET imaging is between image quality and radiation dose: high image quality comes with high radiation exposure. Improving image quality is desirable for all clinical applications while minimizing radiation exposure is needed to reduce risk to patients. METHODS: We introduce PET Consistency Model (PET-CM), an efficient diffusion-based method for generating high-quality full-dose PET images from low-dose PET images. It employs a two-step process, adding Gaussian noise to full-dose PET images in the forward diffusion, and then denoising them using a PET Shifted-window Vision Transformer (PET-VIT) network in the reverse diffusion. The PET-VIT network learns a consistency function that enables direct denoising of Gaussian noise into clean full-dose PET images. PET-CM achieves state-of-the-art image quality while requiring significantly less computation time than other methods. Evaluation with normalized mean absolute error (NMAE), peak signal-to-noise ratio (PSNR), multi-scale structure similarity index (SSIM), normalized cross-correlation (NCC), and clinical evaluation including Human Ranking Score (HRS) and Standardized Uptake Value (SUV) Error analysis shows its superiority in synthesizing full-dose PET images from low-dose inputs. RESULTS: In experiments comparing eighth-dose to full-dose images, PET-CM demonstrated impressive performance with NMAE of 1.278 ± 0.122%, PSNR of 33.783 ± 0.824 dB, SSIM of 0.964 ± 0.009, NCC of 0.968 ± 0.011, HRS of 4.543, and SUV Error of 0.255 ± 0.318%, with an average generation time of 62 s per patient. This is a significant improvement compared to the state-of-the-art diffusion-based model with PET-CM reaching this result 12× faster. Similarly, in the quarter-dose to full-dose image experiments, PET-CM delivered competitive outcomes, achieving an NMAE of 0.973 ± 0.066%, PSNR of 36.172 ± 0.801 dB, SSIM of 0.984 ± 0.004, NCC of 0.990 ± 0.005, HRS of 4.428, and SUV Error of 0.151 ± 0.192% using the same generation process, which underlining its high quantitative and clinical precision in both denoising scenario. CONCLUSIONS: We propose PET-CM, the first efficient diffusion-model-based method, for estimating full-dose PET images from low-dose images. PET-CM provides comparable quality to the state-of-the-art diffusion model with higher efficiency. By utilizing this approach, it becomes possible to maintain high-quality PET images suitable for clinical use while mitigating the risks associated with radiation. The code is availble at https://github.com/shaoyanpan/Full-dose-Whole-body-PET-Synthesis-from-Low-dose-PET-Using-Consistency-Model.

8.
Bone Jt Open ; 5(3): 227-235, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38493798

ABSTRACT

Aims: The optimal management of posterior malleolar ankle fractures, a prevalent type of ankle trauma, is essential for improved prognosis. However, there remains a debate over the most effective surgical approach, particularly between screw and plate fixation methods. This study aims to investigate the differences in outcomes associated with these fixation techniques. Methods: We conducted a comprehensive review of clinical trials comparing anteroposterior (A-P) screws, posteroanterior (P-A) screws, and plate fixation. Two investigators validated the data sourced from multiple databases (MEDLINE, EMBASE, and Web of Science). Following PRISMA guidelines, we carried out a network meta-analysis (NMA) using visual analogue scale and American Orthopaedic Foot and Ankle Score (AOFAS) as primary outcomes. Secondary outcomes included range of motion limitations, radiological outcomes, and complication rates. Results: The NMA encompassed 13 studies, consisting of four randomized trials and eight retrospective ones. According to the surface under the cumulative ranking curve-based ranking, the A-P screw was ranked highest for improvements in AOFAS and exhibited lowest in infection and peroneal nerve injury incidence. The P-A screws, on the other hand, excelled in terms of VAS score improvements. Conversely, posterior buttress plate fixation showed the least incidence of osteoarthritis grade progression, postoperative articular step-off ≥ 2 mm, nonunions, and loss of ankle dorsiflexion ≥ 5°, though it underperformed in most other clinical outcomes. Conclusion: The NMA suggests that open plating is more likely to provide better radiological outcomes, while screw fixation may have a greater potential for superior functional and pain results. Nevertheless, clinicians should still consider the fragment size and fracture pattern, weighing the advantages of rigid biomechanical fixation against the possibility of soft-tissue damage, to optimize treatment results.

9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338662

ABSTRACT

D-amino acid-containing peptides (DAACPs) occur in biological and artificial environments. Since the importance of DAACPs has been recognized, various mass spectrometry-based analytical approaches have been developed. However, the capability of higher-energy collisional dissociation (HCD) fragmentation to characterize DAACP sites has not been evaluated. In this study, we compared the normalized spectra intensity under different conditions of HCD and used liraglutide along with its DAACPs as examples. Our results indicated that the difference in the intensity of y ions between DAACPs and all-L liraglutide could not only distinguish them but also localize the sites of D-amino acids in the DAACPs. Our data demonstrate the potential of using HCD for the site characterization of DAACPs, which may have great impact in biological studies and peptide drug development.


Subject(s)
Liraglutide , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Amino Acids/chemistry , Peptides/chemistry
10.
Med Phys ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346111

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the most common cancer in men and the second leading cause of male cancer-related death. Gleason score (GS) is the primary driver of PCa risk-stratification and medical decision-making, but can only be assessed at present via biopsy under anesthesia. Magnetic resonance imaging (MRI) is a promising non-invasive method to further characterize PCa, providing additional anatomical and functional information. Meanwhile, the diagnostic power of MRI is limited by qualitative or, at best, semi-quantitative interpretation criteria, leading to inter-reader variability. PURPOSES: Computer-aided diagnosis employing quantitative MRI analysis has yielded promising results in non-invasive prediction of GS. However, convolutional neural networks (CNNs) do not implicitly impose a frame of reference to the objects. Thus, CNNs do not encode the positional information properly, limiting method robustness against simple image variations such as flipping, scaling, or rotation. Capsule network (CapsNet) has been proposed to address this limitation and achieves promising results in this domain. In this study, we develop a 3D Efficient CapsNet to stratify GS-derived PCa risk using T2-weighted (T2W) MRI images. METHODS: In our method, we used 3D CNN modules to extract spatial features and primary capsule layers to encode vector features. We then propose to integrate fully-connected capsule layers (FC Caps) to create a deeper hierarchy for PCa grading prediction. FC Caps comprises a secondary capsule layer which routes active primary capsules and a final capsule layer which outputs PCa risk. To account for data imbalance, we propose a novel dynamic weighted margin loss. We evaluate our method on a public PCa T2W MRI dataset from the Cancer Imaging Archive containing data from 976 patients. RESULTS: Two groups of experiments were performed: (1) we first identified high-risk disease by classifying low + medium risk versus high risk; (2) we then stratified disease in one-versus-one fashion: low versus high risk, medium versus high risk, and low versus medium risk. Five-fold cross validation was performed. Our model achieved an area under receiver operating characteristic curve (AUC) of 0.83 and 0.64 F1-score for low versus high grade, 0.79 AUC and 0.75 F1-score for low + medium versus high grade, 0.75 AUC and 0.69 F1-score for medium versus high grade and 0.59 AUC and 0.57 F1-score for low versus medium grade. Our method outperformed state-of-the-art radiomics-based classification and deep learning methods with the highest metrics for each experiment. Our divide-and-conquer strategy achieved weighted Cohen's Kappa score of 0.41, suggesting moderate agreement with ground truth PCa risks. CONCLUSIONS: In this study, we proposed a novel 3D Efficient CapsNet for PCa risk stratification and demonstrated its feasibility. This developed tool provided a non-invasive approach to assess PCa risk from T2W MR images, which might have potential to personalize the treatment of PCa and reduce the number of unnecessary biopsies.

11.
J Appl Clin Med Phys ; 25(5): e14308, 2024 May.
Article in English | MEDLINE | ID: mdl-38368614

ABSTRACT

PURPOSE: Proton therapy is sensitive to anatomical changes, often occurring in head-and-neck (HN) cancer patients. Although multiple studies have proposed online adaptive proton therapy (APT), there is still a concern in the radiotherapy community about the necessity of online APT. We have performed a retrospective study to investigate the potential dosimetric benefits of online APT for HN patients relative to the current offline APT. METHODS: Our retrospective study has a patient cohort of 10 cases. To mimic online APT, we re-evaluated the dose of the in-use treatment plan on patients' actual treatment anatomy captured by cone-beam CT (CBCT) for each fraction and performed a templated-based automatic replanning if needed, assuming that these were performed online before treatment delivery. Cumulative dose of the simulated online APT course was calculated and compared with that of the actual offline APT course and the designed plan dose of the initial treatment plan (referred to as nominal plan). The ProKnow scoring system was employed and adapted for our study to quantify the actual quality of both courses against our planning goals. RESULTS: The average score of the nominal plans over the 10 cases is 41.0, while those of the actual offline APT course and our simulated online course is 25.8 and 37.5, respectively. Compared to the offline APT course, our online course improved dose quality for all cases, with the score improvement ranging from 0.4 to 26.9 and an average improvement of 11.7. CONCLUSION: The results of our retrospective study have demonstrated that online APT can better address anatomical changes for HN cancer patients than the current offline replanning practice. The advanced artificial intelligence based automatic replanning technology presents a promising avenue for extending potential benefits of online APT.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Retrospective Studies , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Cone-Beam Computed Tomography/methods , Prognosis
12.
Med Phys ; 51(4): 2955-2966, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214381

ABSTRACT

BACKGROUND: FLASH radiotherapy (FLASH-RT) with ultra-high dose rate has yielded promising results in reducing normal tissue toxicity while maintaining tumor control. Planning with single-energy proton beams modulated by ridge filters (RFs) has been demonstrated feasible for FLASH-RT. PURPOSE: This study explored the feasibility of a streamlined pin-shaped RF (pin-RF) design, characterized by coarse resolution and sparsely distributed ridge pins, for single-energy proton FLASH planning. METHODS: An inverse planning framework integrated within a treatment planning system was established to design streamlined pin RFs for single-energy FLASH planning. The framework involves generating a multi-energy proton beam plan using intensity-modulated proton therapy (IMPT) planning based on downstream energy modulation strategy (IMPT-DS), followed by a nested pencil-beam-direction-based (PBD-based) spot reduction process to iteratively reduce the total number of PBDs and energy layers along each PBD for the IMPT-DS plan. The IMPT-DS plan is then translated into the pin-RFs and the single-energy beam configurations for IMPT planning with pin-RFs (IMPT-RF). This framework was validated on three lung cases, quantifying the FLASH dose of the IMPT-RF plan using the FLASH effectiveness model. The FLASH dose was then compared to the reference dose of a conventional IMPT plan to measure the clinical benefit of the FLASH planning technique. RESULTS: The IMPT-RF plans closely matched the corresponding IMPT-DS plans in high dose conformity (conformity index of <1.2), with minimal changes in V7Gy and V7.4 Gy for the lung (<3%) and small increases in maximum doses (Dmax) for other normal structures (<3.4 Gy). Comparing the FLASH doses to the doses of corresponding IMPT-RF plans, drastic reductions of up to nearly 33% were observed in Dmax for the normal structures situated in the high-to-moderate-dose regions, while negligible changes were found in Dmax for normal structures in low-dose regions. Positive clinical benefits were seen in comparing the FLASH doses to the reference doses, with notable reductions of 21.4%-33.0% in Dmax for healthy tissues in the high-dose regions. However, in the moderate-to-low-dose regions, only marginal positive or even negative clinical benefit for normal tissues were observed, such as increased lung V7Gy and V7.4 Gy (up to 17.6%). CONCLUSIONS: A streamlined pin-RF design was developed and its effectiveness for single-energy proton FLASH planning was validated, revealing positive clinical benefits for the normal tissues in the high dose regions. The coarsened design of the pin-RF demonstrates potential advantages, including cost efficiency and ease of adjustability, making it a promising option for efficient production.


Subject(s)
Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Proton Therapy/methods , Radiotherapy Dosage , Organs at Risk
13.
Med Phys ; 51(3): 1687-1701, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224306

ABSTRACT

BACKGROUND: Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin-sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities. PURPOSE: The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error-prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection. METHODS: A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset are used for training, validation, and testing. RESULTS: Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre-defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions. CONCLUSIONS: A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Lung , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Radiographic Image Interpretation, Computer-Assisted/methods , Solitary Pulmonary Nodule/diagnostic imaging
14.
Phys Med Biol ; 69(4)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38241726

ABSTRACT

Objective. High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM).Approach. DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020).Main results. For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively.Significance. This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.


Subject(s)
Bisacodyl/analogs & derivatives , Magnetic Resonance Imaging , Models, Statistical , Male , Humans , Signal-To-Noise Ratio , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods
15.
ACS Chem Neurosci ; 15(3): 527-538, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38269400

ABSTRACT

Hair emerged as a biospecimen for long-term investigation of endogenous metabolic perturbations, reflecting the chemical composition circulating in the blood over the past months. Despite its potential, the use of human hair for metabolomics in Alzheimer's disease (AD) research remains limited. Here, we performed both untargeted and targeted metabolomic approaches to profile the key metabolic pathways in the hair of 5xFAD mice, a widely used AD mouse model. Furthermore, we applied the discovered metabolites to human subjects. Hair samples were collected from 6-month-old 5xFAD mice, a stage marked by widespread accumulation of amyloid plaques in the brain, followed by sample preparation and high-resolution mass spectrometry analysis. Forty-five discriminatory metabolites were discovered in the hair of 6-month-old 5xFAD mice compared to wild-type control mice. Enrichment analysis revealed three key metabolic pathways: arachidonic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism. Among these pathways, six metabolites demonstrated significant differences in the hair of 2-month-old 5xFAD mice, a stage prior to the onset of amyloid plaque deposition. These findings suggest their potential involvement in the early stages of AD pathogenesis. When evaluating 45 discriminatory metabolites for distinguishing patients with AD from nondemented controls, a combination of l-valine and arachidonic acid significantly differentiated these two groups, achieving a 0.88 area under the curve. Taken together, these findings highlight the potential of hair metabolomics in identifying disease-specific metabolic alterations and developing biomarkers for improving disease detection and monitoring.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Infant , Alzheimer Disease/metabolism , Arachidonic Acid , Mice, Transgenic , Metabolomics/methods , Metabolome , Mass Spectrometry , Disease Models, Animal
16.
Phys Med Biol ; 69(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38091613

ABSTRACT

The advantage of proton therapy as compared to photon therapy stems from the Bragg peak effect, which allows protons to deposit most of their energy directly at the tumor while sparing healthy tissue. However, even with such benefits, proton therapy does present certain challenges. The biological effectiveness differences between protons and photons are not fully incorporated into clinical treatment planning processes. In current clinical practice, the relative biological effectiveness (RBE) between protons and photons is set as constant 1.1. Numerous studies have suggested that the RBE of protons can exhibit significant variability. Given these findings, there is a substantial interest in refining proton therapy treatment planning to better account for the variable RBE. Dose-average linear energy transfer (LETd) is a key physical parameter for evaluating the RBE of proton therapy and aids in optimizing proton treatment plans. Calculating precise LETddistributions necessitates the use of intricate physical models and the execution of specialized Monte-Carlo simulation software, which is a computationally intensive and time-consuming progress. In response to these challenges, we propose a deep learning based framework designed to predict the LETddistribution map using the dose distribution map. This approach aims to simplify the process and increase the speed of LETdmap generation in clinical settings. The proposed CycleGAN model has demonstrated superior performance over other GAN-based models. The mean absolute error (MAE), peak signal-to-noise ratio and normalized cross correlation of the LETdmaps generated by the proposed method are 0.096 ± 0.019 keVµm-1, 24.203 ± 2.683 dB, and 0.997 ± 0.002, respectively. The MAE of the proposed method in the clinical target volume, bladder, and rectum are 0.193 ± 0.103, 0.277 ± 0.112, and 0.211 ± 0.086 keVµm-1, respectively. The proposed framework has demonstrated the feasibility of generating synthetic LETdmaps from dose maps and has the potential to improve proton therapy planning by providing accurate LETdinformation.


Subject(s)
Deep Learning , Proton Therapy , Proton Therapy/methods , Protons , Linear Energy Transfer , Relative Biological Effectiveness , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods
17.
J Arthroplasty ; 39(3): 813-818.e1, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37776981

ABSTRACT

BACKGROUND: The incidence of unplanned emergency department (ED) visits following revision total joint arthroplasty is an indicator of the quality of postoperative care. The aim of this study was to investigate the incidences, timings, and characteristics of ED visits within 90 days after revision total joint arthroplasty. METHODS: A retrospective review of 457 consecutive cases, including 254 revision total hip arthroplasty (rTHA) and 203 revision total knee arthroplasty (rTKA) cases, was conducted. Data regarding patient demographics, timings of the ED encounter, chief complaints, readmissions, and diagnoses indicating reoperation were analyzed. RESULTS: The results showed that 41 patients who had rTHA (16.1%) and 14 patients who had rTKA (6.9%) returned to the ED within 90 days postoperatively. The incidence of ED visits was significantly higher in the rTHA group than in the rTKA group (P = .003). The most common surgery-related complications were dislocation among rTHA patients and wound conditions among rTKA patients. Apart from elevated calculated comorbidity scores, peptic ulcer in rTHA patients and cerebral vascular events and chronic obstructive pulmonary disease in rTKA patients might increase chances of unplanned ED visits. Patients who had ED visits showed significantly higher mortality rates than the others in both rTHA and rTKA cohorts (P = .050 and P = .008, respectively). CONCLUSIONS: The ED visits within 90 days are more common after rTHA than after rTKA. Patients in both ED visit groups after rTHA and rTKA demonstrated worse survival. Efforts should be made to improve quality of care to prevent ED visits.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Humans , Incidence , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Emergency Room Visits , Risk Factors , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Hip/adverse effects , Retrospective Studies , Reoperation/adverse effects
18.
Med Phys ; 51(3): 1847-1859, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37646491

ABSTRACT

BACKGROUND: Daily or weekly cone-beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image-guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. PURPOSE: This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT distribution for the image quality improvement of CBCT. METHODS: The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time-embedded U-net architecture with residual and attention blocks to gradually transform the white Gaussian noise sample to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head-and-neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross-correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model-based sCT generation methods. RESULTS: In the brain patient study, the MAE, PSNR, and NCC of the generated sCT were 25.99 HU, 30.49 dB, and 0.99, respectively, compared to 40.63 HU, 27.87 dB, and 0.98 of the CBCT images. In the H&N patient study, the metrics were 32.56 HU, 27.65 dB, 0.98 and 38.99 HU, 27.00, 0.98 for sCT and CBCT, respectively. Compared to the other four diffusion models and one Cycle generative adversarial network (Cycle GAN), the proposed method showed superior results in both visual quality and quantitative analysis. CONCLUSIONS: The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT-based organ segmentation and dose calculation for online ART.


Subject(s)
Bisacodyl/analogs & derivatives , Image Processing, Computer-Assisted , Spiral Cone-Beam Computed Tomography , Humans , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography , Tomography, X-Ray Computed , Models, Statistical , Radiotherapy Planning, Computer-Assisted/methods
19.
Med Phys ; 51(4): 2538-2548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38011588

ABSTRACT

BACKGROUND AND PURPOSE: Magnetic resonance imaging (MRI)-based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error-prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI-to-CT transformer-based improved denoising diffusion probabilistic model (MC-IDDPM) to translate MRI into high-quality sCT to facilitate radiation treatment planning. METHODS: MC-IDDPM implements diffusion processes with a shifted-window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted-window transformer V-net (Swin-Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise-free CT scans. With an optimally trained Swin-Vnet, the reverse diffusion process was used to generate noise-free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), Multi-scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. RESULTS: MC-IDDPM generated brain sCTs with state-of-the-art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC-IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. CONCLUSIONS: We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer-based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high-quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.


Subject(s)
Head , Tomography, X-Ray Computed , Male , Humans , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiometry , Image Processing, Computer-Assisted/methods
20.
Front Oncol ; 13: 1278180, 2023.
Article in English | MEDLINE | ID: mdl-38074686

ABSTRACT

Background: The number of patients undergoing proton therapy has increased in recent years. Current treatment planning systems (TPS) calculate dose maps using three-dimensional (3D) maps of relative stopping power (RSP) and mass density. The patient-specific maps of RSP and mass density were obtained by translating the CT number (HU) acquired using single-energy computed tomography (SECT) with appropriate conversions and coefficients. The proton dose calculation uncertainty of this approach is 2.5%-3.5% plus 1 mm margin. SECT is the major clinical modality for proton therapy treatment planning. It would be intriguing to enhance proton dose calculation accuracy using a deep learning (DL) approach centered on SECT. Objectives: The purpose of this work is to develop a deep learning method to generate mass density and relative stopping power (RSP) maps based on clinical single-energy CT (SECT) data for proton dose calculation in proton therapy treatment. Methods: Artificial neural networks (ANN), fully convolutional neural networks (FCNN), and residual neural networks (ResNet) were used to learn the correlation between voxel-specific mass density, RSP, and SECT CT number (HU). A stoichiometric calibration method based on SECT data and an empirical model based on dual-energy CT (DECT) images were chosen as reference models to evaluate the performance of deep learning neural networks. SECT images of a CIRS 062M electron density phantom were used as the training dataset for deep learning models. CIRS anthropomorphic M701 and M702 phantoms were used to test the performance of deep learning models. Results: For M701, the mean absolute percentage errors (MAPE) of the mass density map by FCNN are 0.39%, 0.92%, 0.68%, 0.92%, and 1.57% on the brain, spinal cord, soft tissue, bone, and lung, respectively, whereas with the SECT stoichiometric method, they are 0.99%, 2.34%, 1.87%, 2.90%, and 12.96%. For RSP maps, the MAPE of FCNN on M701 are 0.85%, 2.32%, 0.75%, 1.22%, and 1.25%, whereas with the SECT reference model, they are 0.95%, 2.61%, 2.08%, 7.74%, and 8.62%. Conclusion: The results show that deep learning neural networks have the potential to generate accurate voxel-specific material property information, which can be used to improve the accuracy of proton dose calculation. Advances in knowledge: Deep learning-based frameworks are proposed to estimate material mass density and RSP from SECT with improved accuracy compared with conventional methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...