Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(20): 5436-5444, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743952

ABSTRACT

The excellent reactivity of frustrated Lewis pairs (FLP) to activate small molecules has gained increasing attention in recent decades. Though the development of surface FLP (SFLP) is prompting the application of FLP in the chemical industry, the design of SFLP with superior activity, high density, and excellent stability for small-molecule activation is still challenging. Herein, we review the progress of designing SFLP by surface engineering, screening natural SFLP, and the dynamic formation of SFLP from theoretical perspectives. We highlight the breakthrough in fine-tuning the activity, density, and stability of the designed SFLP studied by using computational methods. We also discuss future challenges and directions in designing SFLP with outstanding capabilities for small-molecule activation.

2.
Angew Chem Int Ed Engl ; 63(23): e202405405, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578834

ABSTRACT

The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.

3.
Angew Chem Int Ed Engl ; 63(16): e202315343, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38425130

ABSTRACT

Direct methane conversion (DMC) to oxygenates at low temperature is of great value but remains challenging due to the high energy barrier for C-H bond activation. Here, we report that in situ decoration of Pd1-ZSM-5 single atom catalyst (SAC) by CO molecules significantly promoted the DMC reaction, giving the highest turnover frequency of 207 h-1 ever reported at room temperature and ~100 % oxygenates selectivity with H2O2 as oxidant. Combined characterizations and DFT calculations illustrate that the C-atom of CO prefers to coordinate with Pd1, which donates electrons to the Pd1-O active center (L-Pd1-O, L=CO) generated by H2O2 oxidation. The correspondingly improved electron density over Pd-O pair renders a favorable heterolytic dissociation of C-H bond with low energy barrier of 0.48 eV. Applying CO decoration strategy to M1-ZSM-5 (M=Pd, Rh, Ru, Fe) enables improvement of oxygenates productivity by 3.2-11.3 times, highlighting the generalizability of this method in tuning metal-oxo electronic structure of SACs for efficient DMC process.

4.
Org Biomol Chem ; 22(5): 970-975, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38179599

ABSTRACT

Development of convenient and effective heterogeneous non-noble metal catalysts for α-alkylation of ketones with alcohols is challenging in heterogeneous catalysis. Here, we report active non-noble metal Cu/CuOx catalysts for the construction of C-C bonds by the α-alkylation of ketones with alcohols through the borrowing hydrogen methodology. The optimal Cu/CuOx-250 catalyst exhibits good catalytic performance in the reactions to give the corresponding products in 50-96% yields. The Cu/CuOx catalysts are characterized by different analysis techniques such as XRD, TEM, XPS, H2-TPR, BET, and ICP. Moreover, the catalyst can be reused at least for five successive cycles without significant loss of activity. The present study provides meaningful insights into the development of non-noble metal heterogeneous catalysts for α-alkylation of ketones with alcohols.

5.
ACS Omega ; 8(50): 47835-47845, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144090

ABSTRACT

Coal tar residue (CTR) is recognized as a hazardous industrial waste with a high carbon content and coal tar consisting mainly of toxic polycyclic aromatic hydrocarbons (PAHs). The coal tar in CTR can be deeply processed into high-value-added fuels and chemicals. Effective separation of coal tar and residue in CTR is a high-value-added utilization method for it. In this paper, ethyl acetate, ethanol, and n-hexane were chosen as extractants to study the extraction process of coal tar from CTR, considering the mass transfer in the liquid phase outside the CTR particles and the diffusion inside the CTR particles, and a mathematical model of the solid-liquid extraction process of CTR was established based on Fick's second law. First, the mass-transfer coefficients (kf) and effective diffusion coefficients (De) of ethyl acetate, ethanol, and n-hexane in solid-liquid extraction at 35 °C were determined to be 1.54 × 10-5 and 4.99 × 10-10 m2·s-1, 1.14 × 10-5 and 3.57 × 10-10 m2·s-1, and 1.01 × 10-5 and 3.48 × 10-10 m2·s-1, respectively. Furthermore, the simulated values obtained by the model also maintained a high degree of agreement with the experimental results, which indicates the high accuracy prediction of the model. Finally, the model was used to investigate the effects of the solvent-solid ratio, temperature, and stirring speed on the extraction rates with the three extractants. According to the analysis with gas chromatography-mass spectrometry (GC-MS), among the three solvents, n-hexane extracted the highest content of aliphatic hydrocarbons (ALHs), ethyl acetate extracted the highest content of oxygenated compounds (OCs), and ethanol extracted the highest content of aromatic hydrocarbons (ARHs). The model and experimental data can be used to provide accurate predictions for industrial utilization of CTR.

6.
Nat Commun ; 14(1): 1741, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36990992

ABSTRACT

Photocatalysis offers an attractive strategy to upgrade H2O to renewable fuel H2. However, current photocatalytic hydrogen production technology often relies on additional sacrificial agents and noble metal cocatalysts, and there are limited photocatalysts possessing overall water splitting performance on their own. Here, we successfully construct an efficient catalytic system to realize overall water splitting, where hole-rich nickel phosphides (Ni2P) with polymeric carbon-oxygen semiconductor (PCOS) is the site for oxygen generation and electron-rich Ni2P with nickel sulfide (NiS) serves as the other site for producing H2. The electron-hole rich Ni2P based photocatalyst exhibits fast kinetics and a low thermodynamic energy barrier for overall water splitting with stoichiometric 2:1 hydrogen to oxygen ratio (150.7 µmol h-1 H2 and 70.2 µmol h-1 O2 produced per 100 mg photocatalyst) in a neutral solution. Density functional theory calculations show that the co-loading in Ni2P and its hybridization with PCOS or NiS can effectively regulate the electronic structures of the surface active sites, alter the reaction pathway, reduce the reaction energy barrier, boost the overall water splitting activity. In comparison with reported literatures, such photocatalyst represents the excellent performance among all reported transition-metal oxides and/or transition-metal sulfides and is even superior to noble metal catalyst.

7.
Phys Chem Chem Phys ; 24(25): 15182-15194, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35707946

ABSTRACT

Isotope substitution, a fascinating tool of physical chemistry, has been broadly applied in the research field of heterogeneous catalysis. In general, due to the differences in the mass-related atomic vibrational frequencies and zero-point energy of isotopic molecules, the apparent isotope effect (AIE) or observed kinetic isotope effect (observed KIE) from isotope substitution examination could provide unique knowledge regarding the reaction rate and mechanism of a catalytic reaction, such as the rate-determining step, key reaction intermediate, or catalyst design and synthesis. However, the treatment of the AIE is not as straightforward as the isotopic switch experiment, and needs sufficient care and comprehensive identification to deal with the influences from the equilibrium isotope effects (EIEs) of quasi-equilibrium elementary steps, kinetic isotope effect (KIE) of the pseudo rate-determining step, transition states, intrinsic reaction barriers, etc. Fundamentally, the key factors affecting the AIE could be the partition function part and the zero-point energy part of each single elementary step. Theoretically, the classification of the KIE could be based on the quantity of KIE (including normal KIE and inverse KIE) or the molecular transformation (including primary KIE, secondary KIE, tunneling KIE, and solvent KIE) involved. This article presents a recap of the fundamental concepts and relations of KIE, EIE and AIE, and a concise review on the selected applications of isotope effects throughout heterogeneous catalysis. Lastly, the meaningful perspectives regarding the critical factors that impact the AIE and the appropriate treatment of the AIE are discussed meticulously.


Subject(s)
Isotopes , Catalysis , Chemistry, Physical , Isotopes/chemistry , Kinetics , Solvents
8.
Nat Commun ; 13(1): 2930, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35614052

ABSTRACT

Methane (CH4) oxidation to high value chemicals under mild conditions through photocatalysis is a sustainable and appealing pathway, nevertheless confronting the critical issues regarding both conversion and selectivity. Herein, under visible irradiation (420 nm), the synergy of palladium (Pd) atom cocatalyst and oxygen vacancies (OVs) on In2O3 nanorods enables superior photocatalytic CH4 activation by O2. The optimized catalyst reaches ca. 100 µmol h-1 of C1 oxygenates, with a selectivity of primary products (CH3OH and CH3OOH) up to 82.5%. Mechanism investigation elucidates that such superior photocatalysis is induced by the dedicated function of Pd single atoms and oxygen vacancies on boosting hole and electron transfer, respectively. O2 is proven to be the only oxygen source for CH3OH production, while H2O acts as the promoter for efficient CH4 activation through ·OH production and facilitates product desorption as indicated by DFT modeling. This work thus provides new understandings on simultaneous regulation of both activity and selectivity by the synergy of single atom cocatalysts and oxygen vacancies.

9.
J Am Chem Soc ; 144(5): 2171-2178, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34995077

ABSTRACT

The coordinated configuration of atomic platinum (Pt) has always been identified as an active site with high intrinsic activity for hydrogen evolution reaction (HER). Herein, we purposely synthesize single vacancies in a carbon matrix (defective graphene) that can trap atomic Pt to form the Pt-C3 configuration, which gives exceptionally high reactivity for HER in both acidic and alkaline solutions. The intrinsic activity of Pt-C3 site is valued with a turnover frequency (TOF) of 26.41 s-1 and mass activity of 26.05 A g-1 at 100 mV, respectively, which are both nearly 18 times higher than those of commercial 20 wt % Pt/C. It is revealed that the optimal coordination Pt-C3 has a stronger electron-capture ability and lower Gibbs free energy difference (ΔG), resulting in promoting the reduction of adsorbed H+ and the acceleration of H2 desorption, thus exhibiting the extraordinary HER activity. This work provides a new insight on the unique coordinated configuration of dispersive atomic Pt in defective C matrix for superior HER performance.

10.
ACS Omega ; 7(51): 48163-48172, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591206

ABSTRACT

High-temperature coal tar contains a high content of heavy components, and the mechanism of its hydrogenation to fuel oil has not been completely revealed at present. In this work, clean environmental friendly fuel oil was obtained from wide fraction high-temperature coal tar (WHTCT) hydrotreated in a three-stage continuous pilot-scale trickle bed reactor filled with commercial catalysts. The effect of reaction temperature (345-405 °C), reaction pressure (10-18 MPa), and LHSV (0.2-0.4 h-1) on the product properties was investigated while the hydrogen/oil ratio remained constant (2000:1). Simultaneously, four lumped kinetic models were established to study the effects of reaction conditions on each component and interconversion between them. The results showed that the increase in temperature and pressure and the decrease in LHSV can effectively improve the quality of products. Under the reaction conditions of a temperature of 390 °C, a pressure of 16 MPa, an LHSV of 0.25 h-1, and a hydrogen/oil ratio of 2000:1, the S and N in the feedstocks can be reduced from 4600 and 6800 µg/g to 24.06 and 14.32 µg/g in the products, respectively. So WHTCT can be used as a suitable feed to obtain gasoline and low-freezing point diesel blending components through hydrogenation. Tail oil (TO) can easily be converted into diesel fraction (DF) and gasoline fraction (GF) with high selectivity. DF can be converted into GF only at higher temperatures, and GF hardly undergoes cracking to gas. The established kinetic model can accurately predict the content of TO, DF, GF, and gas of the products. Therefore, the results can provide a certain valuable reference for further development of industrial applications.

11.
J Chem Phys ; 154(17): 174706, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34241060

ABSTRACT

The development of a single-atom iron catalyst (Fe©SiO2) for the direct conversion of methane to olefins, aromatics, and hydrogen is a breakthrough in the field of nonoxidative conversion of methane (NCM). However, the optimization of the catalyst remains desirable for industrial applications. Herein, 25 transition metals, including Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, and Au, are selected to replace the central Fe atom for screening out better single-atom catalysts for the NCM. Using the performance on the activation of methane, such as the adsorption energy of methane, the dissociation energy, and the barrier of methane as the screening descriptors, Mn©SiO2, Fe©SiO2, W©SiO2, and Re©SiO2 are first screened out. The remarkable performance of the four catalysts on methane activation is attributed to the unique geometric structure and the dz 2 orbitals of the central metal crossing over the Fermi level, which can benefit the interaction between methane and the catalysts. By considering the catalytic performance on the whole pathway of methane to ethylene, W©SiO2 is finally selected as the most active catalyst for the NCM, which has the lowest rate-determining barrier of 1.62 eV and the smallest free energy span (1.06 eV) of the overall catalytic cycle.

12.
Chem Sci ; 12(20): 7125-7137, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-34123340

ABSTRACT

The desire for a carbon-free society and the continuously increasing demand for clean energy make it valuable to exploit green ammonia (NH3) synthesis that proceeds via the electrolysis driven Haber-Bosch (eHB) process. The key for successful operation is to develop advanced catalysts that can operate under mild conditions with efficacy. The main bottleneck of NH3 synthesis under mild conditions is the known scaling relation in which the feasibility of N2 dissociative adsorption of a catalyst is inversely related to that of the desorption of surface N-containing intermediate species, which leads to the dilemma that NH3 synthesis could not be catalyzed effectively under mild conditions. The present work offers a new strategy via introducing atomically dispersed Ru onto a single Co atom coordinated with pyrrolic N, which forms RuCo dual single-atom active sites. In this system the d-band centers of Ru and Co were both regulated to decouple the scaling relation. Detailed experimental and theoretical investigations demonstrate that the d-bands of Ru and Co both become narrow, and there is a significant overlapping of t2g and eg orbitals as well as the formation of a nearly uniform Co 3d ligand field, making the electronic structure of the Co atom resemble that of a "free-atom". The "free-Co-atom" acts as a bridge to facilitate electron transfer from pyrrolic N to surface Ru single atoms, which enables the Ru atom to donate electrons to the antibonding π* orbitals of N2, thus resulting in promoted N2 adsorption and activation. Meanwhile, H2 adsorbs dissociatively on the Co center to form a hydride, which can transfer to the Ru site to cause the hydrogenation of the activated N2 to generate N2H x (x = 1-4) intermediates. The narrow d-band centers of this RuCo catalyst facilitate desorption of surface *NH3 intermediates even at 50 °C. The cooperativity of the RuCo system decouples the sites for the activation of N2 from those for the desorption of *NH3 and *N2H x intermediates, giving rise to a favorable pathway for efficient NH3 synthesis under mild conditions.

13.
Nat Commun ; 12(1): 2305, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33863884

ABSTRACT

The selective hydrogenation of CO2 to value-added chemicals is attractive but still challenged by the high-performance catalyst. In this work, we report that gallium nitride (GaN) catalyzes the direct hydrogenation of CO2 to dimethyl ether (DME) with a CO-free selectivity of about 80%. The activity of GaN for the hydrogenation of CO2 is much higher than that for the hydrogenation of CO although the product distribution is very similar. The steady-state and transient experimental results, spectroscopic studies, and density functional theory calculations rigorously reveal that DME is produced as the primary product via the methyl and formate intermediates, which are formed over different planes of GaN with similar activation energies. This essentially differs from the traditional DME synthesis via the methanol intermediate over a hybrid catalyst. The present work offers a different catalyst capable of the direct hydrogenation of CO2 to DME and thus enriches the chemistry for CO2 transformations.

14.
Angew Chem Int Ed Engl ; 59(42): 18586-18590, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32643319

ABSTRACT

The direct, nonoxidative conversion of methane on a silica-confined single-atom iron catalyst is a landmark discovery in catalysis, but the proposed gas-phase reaction mechanism is still open to discussion. Here, we report a surface reaction mechanism by computational modeling and simulations. The activation of methane occurs at the single iron site, whereas the dissociated methyl disfavors desorption into gas phase under the reactive conditions. In contrast, the dissociated methyl prefers transferring to adjacent carbon sites of the active center (Fe1 ©SiC2 ), followed by C-C coupling and hydrogen transfer to produce the main product (ethylene) via a key -CH-CH2 intermediate. We find a quasi Mars-van Krevelen (quasi-MvK) surface reaction mechanism involving extracting and refilling the surface carbon atoms for the nonoxidative conversion of methane on Fe1 ©SiO2 and this surface process is identified to be more plausible than the alternative gas-phase reaction mechanism.

15.
Nat Nanotechnol ; 15(5): 390-397, 2020 May.
Article in English | MEDLINE | ID: mdl-32231268

ABSTRACT

To meet the requirements of potential applications, it is of great importance to explore new catalysts for formic acid oxidation that have both ultra-high mass activity and CO resistance. Here, we successfully synthesize atomically dispersed Rh on N-doped carbon (SA-Rh/CN) and discover that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation. The mass activity shows 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, respectively, despite the low activity of Rh/C. Interestingly, SA-Rh/CN exhibits greatly enhanced tolerance to CO poisoning, and Rh atoms in SA-Rh/CN resist sintering after long-term testing, resulting in excellent catalytic stability. Density functional theory calculations suggest that the formate route is more favourable on SA-Rh/CN. According to calculations, the high barrier to produce CO, together with the relatively unfavourable binding with CO, contribute to its CO tolerance.

16.
Chem Soc Rev ; 47(15): 5541-5553, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29808839

ABSTRACT

Recently discovered homogeneous frustrated Lewis pairs (FLPs) have attracted much attention for metal-free catalysis due to their promising potential for the activation of small molecules (e.g., H2, CO, CO2, NOx and many others). Hence, a wide range of these homogeneous FLPs have been extensively explored for many advanced organic syntheses, radical chemistry and polymerizations. In particular, these FLPs are efficiently utilized for the hydrogenation of various unsaturated substrates (e.g., olefins, alkynes, esters and ketones). Inspired by the substantial progress in these homogeneous catalytic systems, heterogeneous FLP catalysts, including semi-solid and all-solid catalysts, have also emerged as an exciting and evolving field. In this review, we highlight the recent advances made in heterogeneous FLP-like catalysts and the strategies to construct tailorable interfacial FLP-like active sites on semi-solid and all-solid FLP catalysts. Challenges and outlook for the further development of these catalysts in synthetic chemistry will be discussed.

17.
J Am Chem Soc ; 139(48): 17281-17284, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29135246

ABSTRACT

We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (Eonset, 1.06 vs 1.03 V) and half-wave potential (E1/2, 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H2/O2 and H2/air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H2/air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.

18.
Nat Commun ; 8: 15266, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28516952

ABSTRACT

Identification on catalytic sites of heterogeneous catalysts at atomic level is important to understand catalytic mechanism. Surface engineering on defects of metal oxides can construct new active sites and regulate catalytic activity and selectivity. Here we outline the strategy by controlling surface defects of nanoceria to create the solid frustrated Lewis pair (FLP) metal oxide for efficient hydrogenation of alkenes and alkynes. Porous nanorods of ceria (PN-CeO2) with a high concentration of surface defects construct new Lewis acidic sites by two adjacent surface Ce3+. The neighbouring surface lattice oxygen as Lewis base and constructed Lewis acid create solid FLP site due to the rigid lattice of ceria, which can easily dissociate H-H bond with low activation energy of 0.17 eV.

19.
Phys Chem Chem Phys ; 19(3): 2364-2371, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28054681

ABSTRACT

Dissociation of O2 into atomic oxygen is a significant route for O2 activation in metal-catalyzed oxidation reactions. In this study, we systematically investigated the mechanisms of O2 dissociation and the promoting role of water on nine transition metal (Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) surfaces. It was found that on clean metal surfaces, the dissociation of O2 was most favorable on Co(0001) and most difficult on Au(111), according to the free energy barriers of Co (0.03 eV) < Rh (0.20 eV) < Ni (0.26 eV) < Cu (0.45 eV) < Ir (0.62 eV) < Pd (0.65 eV) < Pt (0.92 eV) < Ag (1.07 eV) < Au (2.50 eV). With the involvement of water, O2 and H2O formed an O2H2O complex via hydrogen bonding interactions, being accompanied by an increased co-adsorption free energy of 0.17-0.52 eV and a more activated O-O bond. More importantly, the introduction of water reduced the barriers of O2 dissociation on all the nine metal surfaces, with the reduction of the free energy barrier ranging from 0.03 eV on Co(0001) to 1.05 eV on Au(111). The intrinsic reasons for the promotional role of water are attributed to the hydrogen bonding effect between O2 and H2O and the electronic modification effect induced by the water-surface interaction. These results provide a fundamental understanding of the catalytic role of water in O2 dissociation on the transition metal surfaces and may be helpful in the rational design of new efficient catalysts for the oxidation reactions using molecular oxygen or air.

20.
Chemistry ; 23(25): 6185-6189, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28005312

ABSTRACT

Direct coupling of alkanes via C-H activation of terminal methyl groups has acquired tremendous interests both scientifically and technically. Herein we present the results of linear alkane-coupling at the step edges of Cu surfaces at modulated temperatures. Combining the observations of scanning tunneling microscopy (STM) with density functional theory plus dispersion (DFT-D) calculations, we elucidate the mechanism of the reaction and demonstrate that the low activation barrier relies on heterogeneous catalysis at the upper step edges, where low-coordinated surface atoms are present. We further reveal the generality of the reaction, so that it can be applied on the step edges of different facets of surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL