Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Heliyon ; 9(11): e21774, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034633

ABSTRACT

Erythropoietin-producing hepatocyte receptor type A2 (EphA2) is a tyrosine kinase that binds to ephrins (e.g., ephrin-A1) to initiate bidirectional signaling between cells. The binding of EphA2 and ephrin-A1 leads to the inhibition of Ras-MAPK activity and tumor growth. During tumorigenesis, the normal interaction between EphA2 and ephrin-A1 is hindered, which leads to the overexpression of EphA2 and induces cancer. The overexpression of EphA2 has been identified as a notable tumor marker in diagnosing and treating pancreatic cancer. In this study, we used phage display to isolate specific antibodies against the active site of EphA2 by using a discontinuous recombinant epitope for immunization. The therapeutic efficacy and inhibition mechanism of the generated antibody against pancreatic cancer was validated and clarified. The generated antibodies were bound to the conformational epitope of endogenous EphA2 on cancer cells, thus inducing cellular endocytosis and causing EphA2 degradation. Molecule signals pAKT, pERK, pFAK, and pSTAT3 were weakened, inhibiting the proliferation and migration of pancreatic cancer cells. The humanized antibody hSD5 could effectively inhibit the growth of the xenograft pancreatic cancer tumor cells BxPc-3 and Mia PaCa-2 in mice, respectively. When antibody hSD5 was administered with gemcitabine, significantly improved effects on tumor growth inhibition were observed. Based on the efficacy of the IgG hSD5 antibodies, clinical administration of the hSD5 antibodies is likely to suppress tumors in patients with pancreatic cancer and abnormal activation or overexpression of EphA2 signaling.

2.
Biochem Biophys Res Commun ; 688: 149214, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37951154

ABSTRACT

Pancreatic adenocarcinoma, a highly aggressive form of cancer with a poor prognosis, necessitates the development of innovative treatment strategies. Our prior research showcased the growth-inhibiting effects of the anti-EphA2 antibody drug hSD5 on pancreatic cancer tumors. This antibody targets and induces the degradation of the EphA2 receptor while also prompting the antibody's internalization. A deeper dive into the hSD5 Fab crystallographic structure and docking studies revealed that hSD5's CDRH3 drives the primary interaction between hSD5 and the EphA2 active site. In this study, we developed a novel antibody-drug conjugate (ADC)-the auristatin-based hSD5-vedotin specifically targeting EphA2 in pancreatic cancer cells. This ADC aims at the tumor-specific antigen EphA2, triggering endocytosis and releasing the conjugated payload molecule Monomethyl auristatin E (MMAE), amplifying the tumor-killing effect. Upon cellular entry, hSD5-vedotin demonstrated an impressive tumor-killing response, inhibiting tumor cell growth and promoting apoptosis even at lower antibody concentrations. In a pancreatic cancer xenograft animal model, hSD5-vedotin showcased the potential to suppress tumor growth entirely. Notably, potential immune resistance responses were also observed in recurrent pancreatic cancer tumors. Our empirical results underscore the possibility of developing hSD5-vedotin further, which we anticipate will have a broader and more potent therapeutic impact on pancreatic cancer and other EphA2-related cancers.


Subject(s)
Adenocarcinoma , Immunoconjugates , Pancreatic Neoplasms , Animals , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Pancreatic Neoplasms/pathology , Adenocarcinoma/drug therapy , Cell Line, Tumor , Neoplasm Recurrence, Local , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
4.
Materials (Basel) ; 16(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37763541

ABSTRACT

Indium is considered a candidate low-temperature solder because of its low melting temperature and excellent mechanical properties. However, the solid-state microstructure evolution of In with different substrates has rarely been studied due to the softness of In. To overcome this difficulty, cryogenic broad Ar+ beam ion polishing was used to produce an artifact-free Cu/In interface for observation. In this study, we accomplished phase identification and microstructure investigation at the Cu/In interface after long-term thermal aging. CuIn2 was observed to grow at the Cu/In interface and proved to be a stable phase in the Cu-In binary system. The peritectoid temperature of the Cu11In9 + In → CuIn2 reaction was confirmed to be between 100 and 120 °C. In addition, the growth rate of CuIn2 was discovered to be dominated by the curvature of the reactant Cu11In9/In phase and the temperature difference with the peritectoid temperature. Finally, a comprehensive microstructural evolution mechanism of the Cu/In solid-state interfacial reaction was proposed.

5.
Biochem Biophys Res Commun ; 680: 161-170, 2023 11 05.
Article in English | MEDLINE | ID: mdl-37741263

ABSTRACT

Studies have shown that the high expression of EphA4 in gastric cancer tissues may correlate with unfavorable clinical pathological characteristics. Therefore, EphA4 may be an effective target for treating gastric cancer in addition to HER-2/neu. In this study, generated scFv S3 can bind endogenous EphA4 of gastric cancer cells and has significant membrane staining. Additionally, scFv S3 binding to EphA4 inhibits the growth and migration of cancer cells and the growth induction that ephrinA1 generates in gastric cancer cells. We found that EphA4 molecules may degrade through antibody treatment of cells, and the increase in LAMP1 and LAMP2 indicates that lysosome is involved in the degradation. The scFv S3 administration leads to the signals pAKT, pERK, and pSTAT3 decrease in cancer cells. The xenograft model of HER-2/neu low expressing gastric cancer cell SNU-16 exhibits better therapeutic effects by scFv S3 than trastuzumab scFv. The scFv S3 administration in vivo can degrade EphA4 molecules in tumor tissues, decreasing Ki67 and increasing cleaved C3 molecule expression. Furthermore, we identified and validated that scFv S3 generates essential ionic bonding with R162 on EphA4. The antibody may provide effective treatment for patients with gastric cancer and abnormal activation or overexpression of EphA4 signaling.


Subject(s)
Single-Chain Antibodies , Stomach Neoplasms , Humans , Signal Transduction , Stomach Neoplasms/drug therapy , Single-Chain Antibodies/pharmacology , Animals
6.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176172

ABSTRACT

Eutectic In-48Sn was considered a promising candidate for low-temperature solder due to its low melting point and excellent mechanical properties. Both Cu2(In,Sn) and Cu(In,Sn)2 formation were observed at the In-48Sn/Cu interface after 160 °C soldering. However, traditional mechanical polishing produces many defects at the In-48Sn/Cu interface, which may affect the accuracy of interfacial reaction investigations. In this study, cryogenic broad Ar+ beam ion milling was used to investigate the interfacial reaction between In-48Sn and Cu during soldering. The phase Cu6(Sn,In)5 was confirmed as the only intermetallic compound formed during 150 °C soldering, while Cu(In,Sn)2 formation was proven to be caused by room-temperature aging after soldering. Both the Cu6(Sn,In)5 and Cu(In,Sn)2 phases were confirmed by EPMA quantitative analysis and TEM selected area electron diffraction. The microstructure evolution and growth mechanism of Cu6(Sn,In)5 during soldering were proposed. In addition, the Young's modulus and hardness of Cu6(Sn,In)5 were determined to be 119.04 ± 3.94 GPa and 6.28 ± 0.13 GPa, respectively, suggesting that the doping of In in Cu6(Sn,In)5 has almost no effect on Young's modulus and hardness.

7.
Materials (Basel) ; 15(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35744357

ABSTRACT

The use of scaled-down micro-bumps in miniaturized consumer electronic products has led to the easy realization of full intermetallic solder bumps owing to the completion of the wetting layer. However, the direct contact of the intermetallic compounds (IMCs) with the adhesion layer may pose serious reliability concerns. In this study, the terminal reaction of the Ti adhesion layer with Cu-Sn IMCs was investigated by aging the micro-bumps at 200 °C. Although all of the micro-bumps transformed into intermetallic structures after aging, they exhibited a strong attachment to the Ti adhesion layer, which differs significantly from the Cr system where spalling of IMCs occurred during the solid-state reaction. Moreover, the difference in the diffusion rates between Cu and Sn might have induced void formation during aging. These voids progressed to the center of the bump through the depleting Cu layer. However, they neither affected the attachment between the IMCs and the adhesion layer nor reduced the strength of the bumps. In conclusion, the IMCs demonstrated better adhesive behavior with the Ti adhesion layer when compared to Cr, which has been used in previous studies.

8.
Cell Biosci ; 11(1): 53, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726836

ABSTRACT

BACKGROUND: The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS: EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvß3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.

9.
Exp Anim ; 70(3): 333-343, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-33716253

ABSTRACT

For highly conserved mammalian protein, chicken is a suitable immune host to generate antibodies. Monoclonal antibodies have been successfully targeted with immunity checkpoint proteins as a means of cancer treatment; this treatment enhances tumor-specific immunity responses through immunoregulation. Studies have identified the importance of B7-H4 in immunoregulation and its use as a potential target for cancer treatment. High levels of B7-H4 expression are found in tumor tissues and are associated with adverse clinical and pathological characteristics. Using the phage display technique, this study isolated specific single-chain antibody fragments (scFvs) against B7-H4 from chickens. Our experiment proved that B7-H4 clearly induced the inhibition of T-cell activation. Therefore, use of anti-B7-H4 scFvs can effectively block the exhaustion of immunity cells and also stimulate and activate T-cells in peripheral blood mononuclear cells. Sequence analysis revealed that two isolated scFv S2 and S4 have the same VH complementarity-determining regions (CDRs) sequence. Molecule docking was employed to simulate the complex structures of scFv with B7-H4 to analyze the interaction. Our findings revealed that both scFvs employed CDR-H1 and CDR-H3 as main driving forces and had strong binding effects with the B7-H4. The affinity of scFv S2 was better because the CDR-L2 loop of the scFv S2 had three more hydrogen bond interactions with B7-H4. The results of this experiment suggest the usefulness of B7-H4 as a target for immunity checkpoints; the isolated B7-H4-specific chicken antibodies have the potential for use in future cancer immunotherapy applications.


Subject(s)
Chickens/immunology , Leukocytes, Mononuclear/immunology , Single-Chain Antibodies/immunology , V-Set Domain-Containing T-Cell Activation Inhibitor 1/immunology , Animals , T-Lymphocytes/immunology
10.
Int Immunopharmacol ; 88: 107007, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33182041

ABSTRACT

The Astragalus membranaceus polysaccharides (APS) can improve immunity and enhance treatment reactions. This study analyzed the effects of effective antivascular endothelial growth factor (anti-VEGF) antibody production in mice treated with APS. After APS treatment, the serum of mice produced the antibody reactions that can cross-validate VEGF. The isolated single-chain fragment variable (scFv) antibodies could neutralize VEGF and inhibit in vivo tumor growth. Of the scFvs, scFv 4E can significantly compete the interaction of bevacizumab with VEGF. In cell experiments, scFv 4E effectively inhibited human umbilical vein endothelial cells induced by VEGF in vitro. In a matrix gel-assisted angiogenesis model, scFv 4E significantly inhibited angiogenesis reactions. In addition, in a xenograft model established in the colorectal cancer cell strain HCT116, scFv 4E treatment inhibited tumor growth by up to 52.7%. Finally, molecule docking was performed to simulate the complex interactions of scFv 4E and VEGF, the main driving forces of which involve the hydrophobic interactions and hydrogen bonds of Tyr108 and Tyr 109 of the complementarity-determining region H3 loop with VEGF. The results help in establishing antibody library with high diversity for selecting antibodies with specificity. In addition, this study indirectly expounded the correlations of APS enhancing immunity regulation in vivo.


Subject(s)
Astragalus Plant/chemistry , Polysaccharides/pharmacology , Vascular Endothelial Growth Factor A/immunology , Angiogenesis Inducing Agents , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Bevacizumab , Biomarkers, Tumor/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , HCT116 Cells , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasms, Experimental , Neovascularization, Pathologic , Peptide Library , Protein Conformation , Single-Chain Antibodies
11.
Biomed Res Int ; 2020: 3415471, 2020.
Article in English | MEDLINE | ID: mdl-32190660

ABSTRACT

Astragalus membranaceus polysaccharide (APS) components are main ingredients of TCM and have proven efficacy to activate T cells and B cells, enhancing immunity in humans. In this study, elevated cytokine and anti-PD-1 antibody titers were found in mice after immunization with APS. Therefore, phage-display technology was utilized to isolate specific anti-programmed death-1 (PD-1) antibodies from mice stimulated by APS and to confirm whether the isolated anti-PD-1 antibody could inhibit the interaction of PD-1 with the programmed death-ligand 1 (PD-L1), resulting in tumor growth inhibition. The isolated single-chain fragment variable (scFv) S12 exhibited the highest binding affinity of 20 nM to PD-1, completed the interaction between PD-1 and PD-L1, and blocked the effect of PD-L1-induced T cell exhaustion in peripheral blood mononuclear cells in vitro. In the animal model, the tumor growth inhibition effect after scFv S12 treatment was approximately 48%. However, meaningful synergistic effects were not observed when scFv S12 was used as a cotreatment with ixabepilone. Moreover, this treatment caused a reduction in the number of tumor-associated macrophages in the tumor tissue. These experimental results indirectly indicate the ability of APS to induce specific antibodies associated with the immune checkpoint system and the potential benefits for improving immunity in humans.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies/therapeutic use , Astragalus propinquus/chemistry , B7-H1 Antigen/immunology , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , Plant Extracts/pharmacology , Allografts , Animals , Disease Models, Animal , Female , Humans , Immunity , Ki-67 Antigen , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use , T-Lymphocytes/immunology , Tumor Microenvironment
12.
Anim Biotechnol ; 30(4): 293-301, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30261812

ABSTRACT

The human cluster of differentiation 19 (CD19) is highly expressed in most leukemia, rendering is a promising therapeutic target. In this study, we generated anti-CD19 single-chain variable fragments (scFv) from immunized chickens by phage display technology. After constructing a scFv antibody library with 2.5 × 108 compositional diversity for panning, one representative scFv clone S2 which can specifically recognize to the CD19 protein was isolated and characterized. The binding reactivity of the scFv S2 to the endogenous CD19 protein of the ARH-77 leukemia cancer cell was verified through flow cytometry and the binding affinity of scFv S2 is 6.9 × 10-8 M determined by the surface plasmon resonance system. Compared with the chicken germline, hyper mutation in the complementarity-determining regions (CDRs) suggested that scFv S2 could be generated through an antigen-driven humoral response. By molecular modeling, the possible CDR configurations of scFv S2 were constructed rationally. Furthermore, the characteristics of chicken antibodies of a protein database were investigated. The findings in this study contribute to antibody development and engineering because they reveal the geometric structures and properties of the CDRs in chicken antibodies.


Subject(s)
Antigens, CD19/immunology , Single-Chain Antibodies/chemistry , Animals , Cell Line, Tumor , Cell Surface Display Techniques , Chickens/immunology , Complementarity Determining Regions/immunology , Humans , Models, Molecular , Single-Chain Antibodies/blood , Single-Chain Antibodies/genetics , Surface Plasmon Resonance
13.
Viral Immunol ; 31(7): 492-499, 2018 09.
Article in English | MEDLINE | ID: mdl-29847243

ABSTRACT

To understand the mechanism for inhibition of hepatitis B virus (HBV) infection is important. In this study, single-chain variable fragment (scFv) antibodies were generated and directed to the pre-S2 epitope of HBV surface antigen (HBsAg). These human scFvs were isolated from a person with history of HBV infection by phage display technology. An evaluation of panning efficiency revealed that the eluted phage titer was increased, indicating that specific clones were enriched after panning. Selected scFvs were characterized with the recombinant HBsAg through Western blotting and enzyme-linked immunosorbent assay to confirm the binding ability. Flow cytometry analysis and immunocytochemical staining revealed that one scFv, S17, could recognize endogenous HBsAg expressed on the HepG2215 cell membrane. Moreover, the binding affinity of scFv S17 to the pre-S2 epitope was determined to be 4.2 × 10-8 M. Two ion interactions were observed as the major driving forces for scFv S17 interacting with pre-S2 by performing a rational molecular docking analysis. This study provides insights into the structural basis to understand the interactions between an antibody and the pre-S2 epitope. The functional scFv format can potentially be used in future immunotherapeutic applications.


Subject(s)
Epitopes/metabolism , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/immunology , Hepatitis B/virology , Single-Chain Antibodies/metabolism , Cell Surface Display Techniques , Epitopes/chemistry , Hep G2 Cells , Hepatitis B Surface Antigens/chemistry , Hepatitis B virus/genetics , Humans , Molecular Docking Simulation , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis, Protein , Single-Chain Antibodies/genetics
14.
Transfusion ; 57(4): 1040-1051, 2017 04.
Article in English | MEDLINE | ID: mdl-28337749

ABSTRACT

BACKGROUND: The aberrant glycosylation on proteins and lipids has been implicated in malignant transformations for promoting the tumorigenesis, metastasis, and evasion from the host immunity. The I-branching ß-1,6-N-acetylglucosaminyltransferase, converting the straight i to branched I histo-blood group antigens, reportedly could influence the migration, invasion, and metastasis of solid tumors. STUDY DESIGN AND METHODS: We first chose the highly cytotoxic natural killer (NK)-92MI cells as effector against leukemia for this cell line has been used in several clinical trials. Fluorescence-activated cell sorting and nonradioactive cytotoxicity assay were performed to reexamine the role of NK-activating receptors, their corresponding ligands, and the tumor-associated carbohydrate antigens in this NK-92MI-leukemia in vitro system. The I role on cytotoxic mechanism was further studied especially on the effector-target interactions by cytotoxic analysis and conjugate formation assay. RESULTS: We showed that expression levels of leukemia surface ligands for NK-activating receptors did not positively reflect susceptibility to NK-92MI. Instead, the expression of I antigen on the leukemia cells was found important in mediating the susceptibility to NK targeting by affecting the interaction with effector cells. Furthermore, susceptibility was shown to dramatically increase while overexpressing branched I antigens on the I- cells. By both conjugate and cytotoxicity assay, we revealed that the presence of I antigen on leukemia cells enhanced the interaction with NK-92MI cells, increasing susceptibility to cell-mediated lysis. CONCLUSION: In our system, branched I antigens on the leukemia were involved in the immunosurveillance mediated by NK cells specifically through affecting the effector-target interaction.


Subject(s)
Antigens, Neoplasm/immunology , I Blood-Group System/immunology , Immunity, Cellular , Killer Cells, Natural/immunology , Leukemia/immunology , Cell Line, Tumor , Humans , Killer Cells, Natural/pathology , Leukemia/pathology , N-Acetylglucosaminyltransferases/immunology , Neoplasm Proteins/immunology
15.
Transfusion ; 56(11): 2691-2702, 2016 11.
Article in English | MEDLINE | ID: mdl-27600951

ABSTRACT

BACKGROUND: Phosphorylation status of the transcription factor CCAAT/enhancer binding protein α (C/EBPα) has been demonstrated in a human hematopoietic cell model to regulate the formation of branched I antigen by affecting its binding affinity to the promoter region of the IGnTC gene during erythroid and granulocytic differentiation. STUDY DESIGN AND METHODS: The K-562 cell line was induced to differentiate into red blood cells (RBCs) or granulocytes by sodium butyrate or retinoic acid, respectively, to study the involvement of three MAP kinase pathways in I antigen synthesis. The regulatory effects of the extracellular signal-regulated kinase (ERK)2-Src homology region 2 domain-containing phosphatase 2 (SHP2) pathway on phosphorylation status and binding affinities of C/EBPα as well as the subsequent activation of IGnTC and synthesis of surface I formation were studied in wild-type K-562 cells and in mutant cells that overexpress ERK2 and SHP2. RESULTS: We found that SHP2-ERK2 signaling regulates the phosphorylation status of C/EBPα to alter its binding affinity onto the IGnTC promoter region, thereby activating the synthesis of cell surface I antigen formation during erythropoiesis. CONCLUSION: SHP2-ERK2 signaling acts upstream of C/EBPα as a regulator of cell surface I antigen synthesis. Such regulation is specific for RBC but not for granulocyte differentiation.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Erythropoiesis , I Blood-Group System/biosynthesis , Mitogen-Activated Protein Kinase 1/metabolism , N-Acetylglucosaminyltransferases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Humans , K562 Cells , N-Acetylglucosaminyltransferases/genetics , N-Acetylhexosaminyltransferases , Phosphorylation , Promoter Regions, Genetic , Protein Binding
16.
Gait Posture ; 40(4): 581-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25047829

ABSTRACT

Complexity is a new measure for identifying the adaptability of a complex system to meet possible challenges. For a center of pressure (COP) time series, the complexity measure represents the stability of postural control. In this study, multiscale entropy (MSE) was used to evaluate the complexity of COP time series in six test conditions of sensory organization test (SOT). Complexity index (CI) is defined as the summation of entropies with coarse-graining scales 1-20 by MSE. A total of 51 subjects belonging to 3 groups - healthy-young, healthy-elderly and dizzy - were recruited in this study. The COP signals in both anteroposterior (AP) and mediolateral (ML) directions were analyzed respectively. According to our results, the CI of AP-direction COP time series is significantly correlated to the equilibrium score, which represents the stability of postural control in SOT. The AP-direction sway is significant larger than the ML-direction sway, particularly in the test conditions with sway-surface. In additions, the CI of AP-direction COP for the healthy-elderly and dizzy groups are significantly lower than those for the healthy young group in the test conditions 1-4. The CI of ML-direction COP for the healthy-elderly group is significantly lower than those for the healthy-young and dizzy groups under test conditions 3 and 6. These results show that the complexity loss is a common status of AP-direction COP time series for both healthy-elderly and dizzy groups, and the complexity of ML-direction COP time series for subjects with unilateral vestibular dysfunction is higher than that for the healthy-elderly group specifically under test conditions 3 and 6.


Subject(s)
Dizziness/physiopathology , Postural Balance/physiology , Adult , Age Factors , Aged , Aging/physiology , Biomechanical Phenomena , Entropy , Female , Humans , Male , Middle Aged , Neurotology/methods , Pressure , Taiwan
17.
PLoS One ; 9(3): e91230, 2014.
Article in English | MEDLINE | ID: mdl-24632582

ABSTRACT

Vestibular disorder is the cause of approximately 50% of dizziness in older people. The vestibular system is a critical postural control mechanism, and posturography analysis is helpful for diagnosing vestibular disorder. In clinical practice, the sensory organization test (SOT) is used to quantify postural control in an upright stance under different test conditions. However, both aging and vestibular disorder cause declines of postural control mechanisms. The aim of this study was to enhance the performance of the SOT using a nonlinear algorithm of empirical mode decomposition (EMD) and to verify the differences of effects caused by aging and/or illnesses benefits to clinical diagnosis. A total of 51 subjects belonging to 3 groups--healthy-young, healthy-elderly and dizzy--were recruited for this study. New dynamic parameters of the SOT were derived from the center of pressure (COP) signals. EMD served as an adaptive filter bank to derive the low- and high-frequency components of the COP. The effects on four ratios of sensory analysis caused by aging and vestibular disorder can be investigated for the specific frequency bands. According to our findings, new SOT parameters derived from the component with the specific frequency band more sensitively reflect the functional condition of vestibular dysfunction. Furthermore, both aging and vestibular dysfunction caused an increase in magnitude for the low-frequency component of the AP-direction COP time series. In summary, the low-frequency fluctuation reflects the stability of postural control, while the high-frequency fluctuation is sensitive to the functional condition of the sensory system. EMD successfully improved the accuracy of SOT measurements in this investigation.


Subject(s)
Vestibular Diseases/physiopathology , Adult , Female , Humans , Male , Middle Aged , Postural Balance/physiology , Vestibular Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL