Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.436
Filter
1.
Sci Total Environ ; 933: 173057, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729372

ABSTRACT

Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/µg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.

2.
Cancer Med ; 13(10): e6952, 2024 May.
Article in English | MEDLINE | ID: mdl-38752672

ABSTRACT

BACKGROUND: The Barcelona Clinic Liver Cancer (BCLC) staging system is an internationally recognized clinical staging system for hepatocellular carcinoma (HCC). However, this staging system does not address the staging and surgical treatment strategies for patients with spontaneous rupture hemorrhage in HCC. In this study, we aimed to investigate the prognosis of patients with BCLC stage A undergoing liver resection for HCC with spontaneous rupture hemorrhage and compare it with the prognosis of patients with BCLC stage A undergoing liver resection without rupture. METHODS: Clinical data of 99 patients with HCC who underwent curative liver resection surgery were rigorously followed up and treated at Shandong Provincial Hospital from January 2013 to January 2023. A retrospective cohort study design was used to determine whether the presence of ruptured HCC (rHCC) is a risk factor for recurrence and survival after curative liver resection for HCC. Prognostic comparisons were made between patients with ruptured and non-ruptured BCLC stage A HCC (rHCC and nrHCC, respectively) who underwent curative liver resection. RESULTS: rHCC (hazard ratio [HR] = 2.974, [p] = 0.016) and tumor diameter greater than 5 cm (HR = 2.819, p = 0.022) were identified as independent risk factors for overall survival (OS) after curative resection of BCLC stage A HCC. The postoperative OS of the spontaneous rupture in the HCC group (Group I) was shorter than that in the BCLC stage A group (Group II) (p = 0.008). Tumor invasion without penetration of the capsule was determined to be an independent risk factor for recurrence-free survival (RFS) after liver resection for HCC (HR = 2.584, p = 0.002). CONCLUSION: HCC with concurrent spontaneous rupture hemorrhage is an independent risk factor for postoperative OS after liver resection. The BCLC stage A1 should be added to complement the current BCLC staging system to provide further guidance for the treatment of patients with spontaneous rupture of HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Staging , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/pathology , Liver Neoplasms/complications , Liver Neoplasms/surgery , Liver Neoplasms/mortality , Male , Female , Middle Aged , Retrospective Studies , Rupture, Spontaneous , Prognosis , Hepatectomy/methods , Aged , Hemorrhage/etiology , Hemorrhage/pathology , Hemorrhage/surgery , Risk Factors , Neoplasm Recurrence, Local/pathology , Adult
3.
Clin Chim Acta ; 560: 119718, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718852

ABSTRACT

Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.

4.
Psychiatry Res ; 337: 115929, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38718554

ABSTRACT

Multiple types of variations have been postulated to confer risk of schizophrenia and bipolar disorder, but majority of present GWAS solely focused on SNPs or small indels, and the impacts of structural variations (SVs) remain less understood. Nevertheless, accumulating evidence suggest that SVs may explain the association signals in certain GWAS hits. Here, we conducted pairwise linkage disequilibrium (LD) analyses of SNPs and SVs in populations from 1000 Genomes Project. Among the 299 psychiatric GWAS loci, 1213 SVs showed an LD of r2 > 0.1 with GWAS risk SNPs, and 66 of them were in moderate to strong LD (r2 > 0.6) with at least one GWAS risk SNP. Nine SVs were subject to further explorative analyses, including eQTL analysis in DLPFC, luciferase reporter gene assays, CRISPR/Cas9-mediated genome deletion and RT-qPCR. These assays highlighted several functional SVs showing regulatory effects on transcriptional activities, and some risk genes (e.g., BORCS7, GNL3) affected by the SVs were also annotated. Finally, mice overexpressing Borcs7 in the mPFC exhibited schizophrenia-like behaviors, such as abnormal prepulse inhibition and social dysfunction. These data suggest that SNPs association signals at GWAS loci might be driven by SVs, highlighting the necessities of considering such variants in future.

5.
Bone Joint Res ; 13(5): 237-246, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38754865

ABSTRACT

Aims: To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Methods: Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue. Results: This study revealed 21,060 hypermethylated and 44,472 hypomethylated DMRs, and 13,194 hypermethylated and 22,448 hypomethylated CpG islands for differential global methylation for chondroitin sulphate treatment response. A total of 12,666 DMR-related genes containing DMRs were identified in their promoter regions, such as CHL1 (false discovery rate (FDR) = 2.11 × 10-11), RIC8A (FDR = 7.05 × 10-4), and SOX12 (FDR = 1.43 × 10-3). Additionally, RIC8A and CHL1 were hypermethylated in responders, while SOX12 was hypomethylated in responders, all showing decreased gene expression. The patterns of cell-specific differential global methylation associated with chondroitin sulphate response were observed. Specifically, we found that DMRs located in TESPA1 and ATP11A exhibited differential DNA methylation between responders and non-responders in granulocytes, monocytes, and B cells. Conclusion: Our study identified cell-specific changes in DNA methylation associated with chondroitin sulphate response in KBD patients.

6.
Brain Imaging Behav ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717573

ABSTRACT

BACKGROUND: Impaired visual mental imagery is an important symptom of depression and has gradually become an intervention target for cognitive behavioral therapy. METHODS: Our study involved a total of 25 healthy controls (HC) and 23 individuals with moderate depressive symptoms (MD). This study explored the attentional mechanism supporting visual mental imagery impairments in depression using the Vividness of Visual Imagery Questionnaire (VVIQ), attentional network test (ANT), and resting-state functional magnetic resonance imaging (rs-fMRI). The intrinsic activity of attention-related regions relative to those supporting visual mental imagery was identified in depression patients. In addition, a meta-analysis was used to describe the cognitive function related to this intrinsic activity. RESULTS: The global correlation (GCOR) of the right anterior fusiform gyrus (FG) was decreased in depression patients. Attention-related areas were concentrated in the right posterior FG; the anterior and posterior functional connectivity (FC) of the FG was decreased in depression patients. Graph theoretic analysis showed that the degree of the right anterior FG was decreased, the degree of the anterior insula was increased, and the negative connection between these two regions was strengthened in depression patients. In addition, the degree of the right anterior FG, the FC between the subregions of the right FG, and the FC between the right anterior FG and insula were correlated with VVIQ scores; however, this correlation was not significant in depression patients. The meta-analysis suggested that the changes in the anterior FG in depressed patients may stem from difficulties of semantic memory retrieval. CONCLUSION: The changed intrinsic activity of subregions of the FG relative to the semantic memory retrieval may be associated with visual mental imagery impairments in depression.

7.
Methods ; 228: 12-21, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759908

ABSTRACT

Annotating cell types of single-cell RNA sequencing (scRNA-seq) data is crucial for studying cellular heterogeneity in the tumor microenvironment. Recently, large-scale pre-trained language models (PLMs) have achieved significant progress in cell-type annotation of scRNA-seq data. This approach effectively addresses previous methods' shortcomings in performance and generalization. However, fine-tuning PLMs for different downstream tasks demands considerable computational resources, rendering it impractical. Hence, a new research branch introduces parameter-efficient fine-tuning (PEFT). This involves optimizing a few parameters while leaving the majority unchanged, leading to substantial reductions in computational expenses. Here, we utilize scBERT, a large-scale pre-trained model, to explore the capabilities of three PEFT methods in scRNA-seq cell type annotation. Extensive benchmark studies across several datasets demonstrate the superior applicability of PEFT methods. Furthermore, downstream analysis using models obtained through PEFT showcases their utility in novel cell type discovery and model interpretability for potential marker genes. Our findings underscore the considerable potential of PEFT in PLM-based cell type annotation, presenting novel perspectives for the analysis of scRNA-seq data.

8.
Biodes Res ; 6: 0031, 2024.
Article in English | MEDLINE | ID: mdl-38572349

ABSTRACT

Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.

9.
Brain Res ; 1838: 148947, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38657887

ABSTRACT

Perceived stress is an acknowledged risk factor for subthreshold depression (StD), and fluctuations in perceived stress are thought to disrupt the harmony of brain networks essential for emotional and cognitive functioning. This study aimed to elucidate the relationship between eye-open (EO) and eye-closed (EC) states, perceived stress, and StD. We recruited 27 individuals with StD and 33 healthy controls, collecting resting state fMRI data under both EC and EO conditions. We combined intrinsic connectivity and seed-based functional connectivity analyses to construct the functional network and explore differences between EC and EO conditions. Graph theory analysis revealed weakened connectivity strength in the right superior frontal gyrus (SFG) and right median cingulate and paracingulate gyrus (MCC) among participants with StD, suggesting an important role for these regions in the stress-related emotions dysregulation. Notably, altered SFG connectivity was observed to significantly relate to perceived stress levels in StD, and the SFG connection emerges as a neural mediator potentially influencing the relationship between perceived stress and StD. These findings highlight the role of SFG and MCC in perceived stress and suggest that understanding EC and EO states in relation to these regions is important in the neurobiological framework of StD. This may offer valuable perspectives for early prevention and intervention strategies in mental health disorders.

10.
Article in English | MEDLINE | ID: mdl-38659261

ABSTRACT

BACKGROUND: Honokiol is a natural polyphenolic compound extracted from Magnolia officinali, which is commonly used material in Chinese herbal medicine, has a variety of biological functions, including anti-tumor, anti-oxidant, anti-inflammation, anti-microbial and anti-allergy. Although honokiol has numerous beneficial effects on human diseases, the underlying mechanisms of tumor metastasis are still unclear. Previously, we reported that honokiol suppresses thyroid cancer cell proliferation with cytotoxicity through cell cycle arrest, apoptosis, and dysregulation of intracellular hemostasis. Herein, we hypothesized that the antioxidant effect of honokiol might play a critical role in thyroid cancer cell proliferation and migration. METHODS: The cell viability assays, cellular reactive oxygen species (ROS) activity, cell migration, and immunoblotting were performed after cells were treated with honokiol. RESULTS: Based on this hypothesis, we first demonstrated that honokiol suppresses cell proliferation in two human anaplastic thyroid carcinoma (ATC) cell lines, KMH-2 and ASH-3, within a dosage- and time-dependent manner by cell counting kit-8 (CCK-8) assay. Next, we examined that honokiol induced ROS activation and could be suppressed by pre-treated with an antioxidant agent, N-acetyl-l-cysteine (NAC). Furthermore, the honokiol suppressed cell proliferation can be rescued by pre-treated with NAC. Finally, we demonstrated that honokiol inhibited ATC cell migration by modulating epithelial-mesenchymal transition (EMT)-related markers by Western blotting. CONCLUSION: Taken together, we provided the potential mechanism for treating ATC cells with honokiol, which significantly suppresses tumor proliferation and inhibits tumor metastasis in vitro through reactive oxygen species (ROS) induction.

11.
Crit Rev Immunol ; 44(5): 59-70, 2024.
Article in English | MEDLINE | ID: mdl-38618729

ABSTRACT

We investigated the potential arthritis-inducing effects of Phillygenin and its underlying mechanisms. RAW264.7 cells were stimulated with lipopolysaccharide to induce inflammation. Phillygenin was found to reduce arthritis score, histopathological changes, paw edema, spleen index, and ALP levels in a dose-dependent manner in a model of arthritis. Additionally, Phillygenin was able to decrease levels of inflammation markers in serum samples of mice with arthritis and also inhibited inflammation markers in the cell supernatant of an in vitro model of arthritis. Phillygenin increased cell viability and JC-1 disaggregation, enhanced calcien-AM/CoCl2, reduced LDH activity levels and IL-1a levels, and inhibited Calcein/PI levels and iron concentration in an in vitro model. Phillygenin was also found to reduce ROS-induced oxidative stress and Ferroptosis, and suppress the NLRP3 inflammasome in both in vivo and in vitro models through AMPK. In the in vivo model, Phillygenin was observed to interact with AMPK protein. These findings suggest that Phillygenin may be a potential therapeutic target for preventing arthritis by inhibiting NLRP3 inflammasome and Ferroptosis through AMPK. This indicates that Phillygenin could have disease-modifying effects on arthritis.


Subject(s)
Arthritis , Ferroptosis , Lignans , Humans , Animals , Mice , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , AMP-Activated Protein Kinases , Inflammation
12.
ChemSusChem ; : e202400526, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679575

ABSTRACT

Layered vanadium-based oxides have emerged as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to their open-framework layer structure and high theoretical capacity among the diverse cathode materials investigated. However, the susceptibility to structural collapse during charge-discharge cycling severely hampers their advancement. Herein, we propose an effective strategy to enhance the cycling stability of vanadium oxides. Initially, the structural integrity of the host material is significantly reinforced by incorporating bi-cations Na+ and NH4+ as "pillars" between the V2O5 layers (NaNVO). Subsequently, surface coating with polyaniline (PA) is employed to further improve the conductivity of the active material. As anticipated, the assembled Zn//NaNVO@PA cell exhibits a remarkable discharge capacity of 492 mAh g-1 at 0.1 A g-1 and exceptional capacity retention up to 89.2% after 1000 cycles at a current density of 5 A g-1. Moreover, a series of in-situ and ex-situ characterization techniques were utilized to investigate both Zn ions insertion/extraction storage mechanism and the contribution of polyaniline protonation process towards enhancing capacity.

13.
Chemosphere ; 354: 141598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432464

ABSTRACT

Steroid hormones (SHs) have attracted mounting attention due to their endocrine-disrupting effects on humans and aquatic organisms. However, the lack of analytical methods and toxicity data for a large number of SHs has limited the effective management of SH contamination in the water-sediment systems. In this study, we developed a highly sensitive analytical method for the simultaneous quantification of 144 SHs to investigate their occurrence, spatial distribution and partitioning in the water and sediment in Taihu Lake. The results showed that the total concentrations of SHs in water and sediment were 366.88-998.23 ng/L (mean: 612.84 ng/L) and 17.46-150.20 ng/g (mean: 63.41 ng/g), respectively. The spatial distribution of SHs in Taihu Lake might be simultaneously influenced by the pollution sources, lake hydrodynamics, and sediment properties. The sediment-water partitioning result implied that 28 SHs were in dynamic equilibrium at the water-water interface. In addition, 22 and 12 SHs tended to spread to water and settle into sediment, respectively. To assess the ecological risk of all SHs, a robust random forest model (R2 = 0.801) was developed to predict the acute toxicity of SHs for which toxicity data were not available from publications. Risk assessment showed that SHs posed a high ecological risk throughout Taihu Lake, with the highest risk in the northwestern areas. Estrone, 17ß-estradiol and 17α-ethynylestradiol were the dominant risk contributors and were therefore recommended as the priority SHs in Taihu Lake. This work provided a valuable dataset for Taihu Lake, which would help to provide guidance and suggestions for future studies and be useful for the government to develop the mitigation and management measures.


Subject(s)
Lakes , Water Pollutants, Chemical , Humans , Lakes/analysis , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Tandem Mass Spectrometry , Water , Risk Assessment , Estradiol , Estrone , China , Geologic Sediments
14.
J Cell Mol Med ; 28(6): e18163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445776

ABSTRACT

Malic enzyme (ME) genes are key functional metabolic enzymes playing a crucial role in carcinogenesis. However, the detailed effects of ME gene expression on breast cancer progression remain unclear. Here, our results revealed ME1 expression was significantly upregulated in breast cancer, especially in patients with oestrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor 2-positive breast cancer. Furthermore, upregulation of ME1 was significantly associated with more advanced pathological stages (p < 0.001), pT stage (p < 0.001) and tumour grade (p < 0.001). Kaplan-Meier analysis revealed ME1 upregulation was associated with poor disease-specific survival (DSS: p = 0.002) and disease-free survival (DFS: p = 0.003). Multivariate Cox regression analysis revealed ME1 upregulation was significantly correlated with poor DSS (adjusted hazard ratio [AHR] = 1.65; 95% CI: 1.08-2.52; p = 0.021) and DFS (AHR, 1.57; 95% CI: 1.03-2.41; p = 0.038). Stratification analysis indicated ME1 upregulation was significantly associated with poor DSS (p = 0.039) and DFS (p = 0.038) in patients with non-triple-negative breast cancer (TNBC). However, ME1 expression did not affect the DSS of patients with TNBC. Biological function analysis revealed ME1 knockdown could significantly suppress the growth of breast cancer cells and influence its migration ability. Furthermore, the infiltration of immune cells was significantly reduced when they were co-cultured with breast cancer cells with ME1 knockdown. In summary, ME1 plays an oncogenic role in the growth of breast cancer; it may serve as a potential biomarker of progression and constitute a therapeutic target in patients with breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Breast , Carcinogenesis , Coculture Techniques , Disease-Free Survival
15.
Front Genet ; 15: 1339064, 2024.
Article in English | MEDLINE | ID: mdl-38533208

ABSTRACT

Introduction: Pulmonary fibrosis (PF), a type of interstitial pneumonia with complex etiology and high mortality, is characterized by progressive scarring of the alveolar interstitium and myofibroblastic lesions. In this study, we screened for potential biomarkers in PF and clarified the role of the lncRNA-miRNA-mRNA ceRNA network in the inhibitory effect of SRL-4 on PF. Methods: Healthy male SPF SD rats were randomly divided into three groups, namely, CON, MOD, and SRL-4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to determine the biological functions of the target genes. A visualized lncRNA-miRNA-mRNA ceRNA network was constructed using Cytoscape, while key genes in the network were identified using the cytoNCA plugin. Results: Seventy-four differentially expressed lncRNAs and 118 differentially expressed mRNAs were identified. Gene Ontology analysis revealed that the target genes were mainly enriched in the cell membrane and in response to organic substances, while Kyoto Encyclopedia of Genes and Genomes analysis showed that the target genes were mainly enriched in the AMPK, PPAR, and cAMP signaling pathways. We elucidated a ceRNA axis, namely, Plcd3-OT1/rno-miR-150-3p/Fkbp5, with potential implications in PF. Key genes, such as AABR07051308.1-201, F2rl2-OT1, and LINC3337, may be important targets for the treatment of PF, while the AMPK, PPAR, and cAMP signaling pathways are potential key targets and important pathways through which SRL-4 mitigates PF. Conclusion: Our findings suggest that SRL-4 improves PF by regulating the lncRNA-miRNA-mRNA network.

16.
Drug Des Devel Ther ; 18: 747-766, 2024.
Article in English | MEDLINE | ID: mdl-38495630

ABSTRACT

Purpose: Type 2 diabetes mellitus (T2DM) is associated with reduced insulin uptake and glucose metabolic capacity. Potentilla discolor Bunge (PDB) has been used to treat T2DM; however, the fundamental biological mechanisms remain unclear. This study aimed to understand the active ingredients, potential targets, and underlying mechanisms through which PDB treats T2DM. Methods: Components and action targets were predicted using network pharmacology and molecular docking analyses. PDB extracts were prepared and validated through pharmacological intervention in a Cg>InRK1409A diabetes Drosophila model. Network pharmacology and molecular docking analyses were used to identify the key components and core targets of PDB in the treatment of T2DM, which were subsequently verified in animal experiments. Results: Network pharmacology analysis revealed five effective compounds made up of 107 T2DM-related therapeutic targets and seven protein-protein interaction network core molecules. Molecular docking results showed that quercetin has a strong preference for interleukin-1 beta (IL1B), IL6, RAC-alpha serine/threonine-protein kinase 1 (AKT1), and cellular tumor antigen p53; kaempferol exhibited superior binding to tumor necrosis factor and AKT1; ß-sitosterol demonstrated pronounced binding to Caspase-3 (CASP3). High-performance liquid chromatography data quantified quercetin, kaempferol, and ß-sitosterol at proportions of 0.030%, 0.025%, and 0.076%, respectively. The animal experiments revealed that PDB had no effect on the development, viability, or fertility of Drosophila and it ameliorated glycolipid metabolism disorders in the diabetes Cg>InRK1409A fly. Furthermore, PDB improved the body size and weight of Drosophila, suggesting its potential to alleviate insulin resistance. Moreover, PDB improved Akt phosphorylation and suppressed CASP3 activity to improve insulin resistance in Drosophila with T2DM. Conclusion: Our findings suggest that PDB ameliorates diabetes metabolism disorders in the fly model by enhancing Akt activity and suppressing CASP3 expression. This will facilitate the development of key drug targets and a potential therapeutic strategy for the clinical treatment of T2DM and related metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Potentilla , Animals , Diabetes Mellitus, Type 2/drug therapy , Caspase 3 , Kaempferols , Drosophila , Molecular Docking Simulation , Network Pharmacology , Proto-Oncogene Proteins c-akt , Quercetin
17.
J Transl Med ; 22(1): 261, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461333

ABSTRACT

BACKGROUND: The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. METHODS: A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein-Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. RESULTS: A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value < 0.05 and HR/N > 1.5 or HR/N < 0.66 set as the threshold criteria. Enrichment analysis of differentially expressed proteins unveiled biological processes such as mRNA splicing, apoptosis regulation, and cell division, while molecular functions were predominantly associated with energy metabolic activity. These proteins play key roles in the cellular responses during HR, offering insights into the IRI mechanisms and potential therapeutic targets. The validation of hub genes MFN2 and BNIP3 both in vitro and vivo was consistent with the proteomic findings. MFN2 demonstrated a protective role in maintaining the integrity of mitochondria associated membranes (MAMs) and mitigating mitochondrial damage following hypoxia/reoxygenation injury, this protective effect may be associated with the activation of the PI3K/AKT pathway. CONCLUSIONS: The proteins located in mitochondria associated membranes (MAMs) are implicated in crucial roles during renal ischemic reperfusion injury (IRI), with MFN2 playing a pivotal regulatory role in this context.


Subject(s)
Mitochondria Associated Membranes , Reperfusion Injury , Humans , Phosphatidylinositol 3-Kinases , Proteomics , Hypoxia
18.
Artif Cells Nanomed Biotechnol ; 52(1): 201-217, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38488151

ABSTRACT

The main purpose of this study was to explore the changes of biomarkers in different developmental stages of bleomycin-induced pulmonary fibrosis (PF) in rats via comprehensive pathophysiology, UPLC-QTOF/MS metabonomic technology, and 16S rRNA gene sequencing of intestinal microbiota. The rats were randomly divided into normal control and 1-, 2- and 4-week model group. The rat model of PF was established by one-time intratracheal instillation of bleomycin. The levels of inflammatory and fibrosis-related factors such as hydroxyproline (HYP), type III procollagen (COL-III), type IV collagen (COL-IV), hyaluronidase (HA), laminin (LN), interleukin (IL)-1ß, IL-6, malondialdehyde (MDA) increased and superoxide dismutase (SOD) decreased as the PF cycle progressed. In the 1-, 2- and 4-week model group, 2, 19 and 18 potential metabolic biomarkers and 3, 16 and 12 potential microbial biomarkers were detected, respectively, which were significantly correlated. Glycerophospholipid metabolism pathway was observed to be an important pathway affecting PF at 1, 2 and 4 weeks; arginine and proline metabolism pathways significantly affected PF at 2 weeks. Linoleic acid metabolism pathway exhibited clear metabolic abnormalities at 2 and 4 weeks of PF, and alpha-linolenic acid metabolism pathway significantly affected PF at 4 weeks.


In this study, metabolomics technology and intestinal microbiota 16S rRNA gene sequencing were used to search for biomarkers with significant differences in each stage of pulmonary fibrosis. Finally, the variation characteristics of each stage of the disease were discussed. The hope is to provide new insights into the development of diagnostic biomarkers and potential therapeutic targets at all stages.


Subject(s)
Gastrointestinal Microbiome , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , RNA, Ribosomal, 16S , Bleomycin/adverse effects , Biomarkers
19.
Heliyon ; 10(3): e25446, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322971

ABSTRACT

Photoelectrochemical water splitting via solar irradiation has garnered significant interest due to its potential in large-scale renewable hydrogen production. Heterostructure materials have emerged as an effective strategy, demonstrating enhanced performance in photoelectrochemical water-splitting applications compared to individual photocatalysts. In this study, to augment the performance of sprayed TiVO4 thin films, a hydrothermally prepared WO3 underlayer was integrated beneath the spray pyrolised TiVO4 film. The consequent heterostructure demonstrated notable enhancements in optical, structural, microstructural attributes, and photocurrent properties. This improvement is attributed to the strategic deposition of WO3 underlayer, forming a heterostructure composite electrode. This led to a marked increase in photocurrent density for the WO3/TiVO4 photoanode, reaching a peak of 740 µA/cm2 at an applied potential of 1.23 V vs RHE, about nine-fold that of standalone TiVO4. Electrochemical impedance spectroscopy revealed a reduced semicircle for the heterostructure, indicating improved charge transfer compared to bare TiVO4. The heterostructure photoelectrode exhibited enhanced charge carrier conductivity at the interface and sustained stability over 3 h. The distinct attributes of heterostructure photoelectrode present significant opportunities for devising highly efficient sunlight-driven water-splitting systems.

20.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334530

ABSTRACT

Critical to boosting photoelectrochemical (PEC) performance is improving visible light absorption, accelerating carrier separation, and reducing electron-hole pair recombination. In this investigation, the PVD/RF method was employed to fabricate WO3 thin films that were subsequently treated using the surface treatment process, and the film surface was modified by introducing varying concentrations of cobalt nanoparticles, a non-noble metal, as an effective Co catalyst. The results show that the impact of loaded cobalt nanoparticles on the film surface can explain the extended absorption spectrum of visible light, efficiently capturing photogenerated electrons. This leads to an increased concentration of charge carriers, promoting a faster rate of carrier separation and enhancing interface charge transfer efficiency. Compared with a pristine WO3 thin film photoanode, the photocurrent of the as-prepared Co/WO3 films shows a higher PEC activity, with more than a one-fold increase in photocurrent density from 1.020 mA/cm2 to 1.485 mA/cm2 under simulated solar radiation. The phase, crystallinity, and surface of the prepared films were analysed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The PVD/RF method, scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) were employed to assess the surface morphology of the fabricated film electrode. Optical properties were studied using UV-vis absorbance spectroscopy. Simultaneously, the photoelectrochemical properties of both films were evaluated using linear sweep voltammetry and electrochemical impedance spectroscopy (EIS). These results offer a valuable reference for designing high-performance photoanodes on a large scale for photoelectrochemical (PEC) applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...