Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(2): 108887, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318376

ABSTRACT

UB-612 pan-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine targets the monomeric Spike S1-receptor binding domain (RBD) subunit protein along with five sequence-conserved T cell epitopes found on Spike S2 and non-Spike M and N proteins. UB-612 vaccination safely induces potent, broad, and long-lasting immunity against SARS-CoV-2. A phase-2 trial-extended observational study during the Omicron BA.2-/BA.5-dominated outbreak was conducted to investigate UB-612's protective effect against COVID-19 hospitalization and intensive care unit (ICU) admission (H-ICU). Additionally, memory viral-neutralizing titer and T cell immunity behind disease protection were explored. No cases of H-ICU were reported beyond 14 months post-second dose or beyond 10 months post-booster (third dose). The positive outcome correlates with strong cytotoxic CD8 T cell immunity, in line with the results of an ongoing phase-3 heterologous booster trial showing that UB-612 can enhance anti-BA.5 seroconversion rate and viral-neutralizing titer for mRNA, adeno-vectored, and virus-inactivated vaccine platforms. The UB-612 multitope vaccine may serve as an effective primer and booster for those at risk of SARS-CoV-2 infection.

2.
J Biol Chem ; 296: 100564, 2021.
Article in English | MEDLINE | ID: mdl-33745968

ABSTRACT

The phosphatase cell division cycle 25B (Cdc25B) regulates cell cycle progression. Increased Cdc25B levels are often detected in cancer cell lines and human cancers and have been implicated in contributing to tumor growth, potentially by providing cancer cells with the ability to bypass checkpoint controls. However, the specific mechanism by which increased Cdc25B impacts tumor progression is not clear. Here we analyzed The Cancer Genome Atlas (TCGA) database and found that patients with high CDC25B expression had the expected poor survival. However, we also found that high CDC25B expression had a p53-dependent tumor suppressive effect in lung cancer and possibly several other cancer types. Looking in more detail at the tumor suppressive function of Cdc25B, we found that increased Cdc25B expression caused inhibition of cell growth in human normal fibroblasts. This effect was not due to alteration of specific cell cycle stage or inhibition of apoptosis, nor by induction of the DNA damage response. Instead, increased CDC25B expression led cells into senescence. We also found that p53 was required to induce senescence, which might explain the p53-dependent tumor suppressive function of Cdc25B. Mechanistically, we found that the Cdc25B phosphatase activity was required to induce senescence. Further analysis also found that Cdc25B stabilized p53 through binding and dephosphorylating p53. Together, this study identified a tumor-suppressive function of Cdc25B that is mediated through a p53-dependent senescence pathway.


Subject(s)
Cellular Senescence , Tumor Suppressor Protein p53/metabolism , Cell Cycle , Cell Line, Tumor , DNA Damage , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...